Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1741-2019
https://doi.org/10.5194/hess-23-1741-2019
Technical note
 | 
27 Mar 2019
Technical note |  | 27 Mar 2019

Technical note: Changes in cross- and auto-dependence structures in climate projections of daily precipitation and their sensitivity to outliers

Jan Hnilica, Martin Hanel, and Vladimír Puš

Related authors

Technical note: Changes of cross- and auto-dependence structures in climate projections of daily precipitation and their sensitivity to outliers
Jan Hnilica, Martin Hanel, and Vladimír Puš
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-7,https://doi.org/10.5194/hess-2018-7, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023,https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
A semi-parametric hourly space–time weather generator
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023,https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023,https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023,https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Key ingredients in regional climate modeling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-222,https://doi.org/10.5194/hess-2023-222, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012. 
Chen, J., Brissette, F. P., and Lucas-Picher, P.: Assessing the limits of bias-correcting climate model outputs for climate change impact studies, J. Geophys. Res.-Atmos., 120, 1123–1136, https://doi.org/10.1002/2014JD022635, 2015. 
Davison, A. C. and Hinkley, D. V.: Bootstrap methods and their application, Cambridge University Press, Cambridge, United Kingdom, 1997. 
Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values, Global Planet. Change, 57, 16–26, https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007. 
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012. 
Download
Short summary
A statistical significance of changes in correlations of daily precipitation in six RCM simulations is assessed. The effect of outliers is explored and a concept of dependence outliers is presented. We show that correlation estimates can be strongly affected by a few outliers; therefore any statistical correction relying on sample correlation can provide misleading results. An exploratory procedure is proposed to detect and evaluate the dependence outliers in multivariate data.