Ahmed, R., Edwards, M. G., Lamine, S., Huisman, B. A. H., and Pal, M.:
Control-volume distributed multi-point flux approximation coupled with a
lower-dimensional fracture model, J. Comput. Phys., 284, 462–489, 2015.

Bear, J. and Cheng, A. H. D.: Modeling groundwater flow and contaminant
transport, Springer, New York, 2010.

Berrone, S., Fidelibus, C., Pieraccini, S., Scialò, S., and Vicini, F.:
Unsteady advection-diffusion simulations in complex Discrete Fracture
Networks with an optimization approach, J. Hydrol., 566, 332–345, 2018.

Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and
Berkowitz, B.: Scaling of fracture systems in geological media, Rev.
Geophys., 39, 347–383, 2001.

Botros, F. E., Hassan, A. E., Reeves, D. M., and Pohll, G.: On mapping
fracture networks onto continuum, Water Resour. Res., 44, W08435,
https://doi.org/10.1029/2007WR006092, 2008.

Bour, O., Davy, P., Darcel, C., and Odling, N.: A statistical scaling model
for fracture network geometry, with validation on a multiscale mapping of a
joint network (Hornelen Basin, Norway), J. Geophys. Res.-Sol. Ea., 107, ETG
4-1–ETG 4-12, https://doi.org/10.1029/2001JB000176, 2002.

Cacas, M. C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P.,
Gaillard, B., and Margritta, R.: Modeling fracture flow with a stochastic
discrete fracture network: Calibration and validation: 2. The transport
model, Water Resour. Res., 26, 491–500, 1990a.

Cacas, M. C., Ledoux, E., de Marsily, G., Tillie, B., Barbreau, A., Durand,
E., Feuga, B., and Peaudecerf, P.: Modeling fracture flow with a stochastic
discrete fracture network: calibration and validation: 1. The flow model,
Water Resour. Res., 26, 479–489, 1990b.

Dagan, G.: Flow and transport in porous formations. Springer-Verlag GmbH
& Co. KG, 1989.

de Dreuzy, J.-R., Pichot, G., Poirriez, B., and Erhel, J.: Synthetic
benchmark for modeling flow in 3-D fractured media, Comput. Geosci., 50,
59–71, 2013.

Erhel, J., de Dreuzy, J. R., Beaudoin, A., Bresciani, E., and
Tromeur-Dervout, D.: A parallel scientific software for heterogeneous
hydrogeoloy, Parallel Computational Fluid Dynamics 2007, Springer Berlin
Heidelberg, 39–48, 2009.

Fourno, A., Ngo, T.-D., Noetinger, B., and La Borderie, C.: FraC: A new
conforming mesh method for discrete fracture networks, J. Comput. Phys., 376,
713–732, 2019.

Gelhar, L. W., Wetly, C., and Rehfeldt, K. R.: A critical review of data on
field-scale dispersion in aquifers, Water Resour. Res., 28, 1955–1974, 1992.

Hartley, L. and Joyce, S.: Approaches and algorithms for groundwater flow
modeling in support of site investigations and safety assessment of the
Forsmark site, Sweden, J. Hydrol., 500, 200–216, 2013.

Hyman, J. D., Gable, C. W., Painter, S. L., and Makedonska, N.: Conforming
delaunay triangulation of stochastically generated three dimensional discrete
fracture networks: A feature rejection algorithm for meshing strategy, SIAM
J. Sci. Comput., 36, A1871–A1894, 2014.

Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., and
Viswanathan, H. S.: dfnWorks: A discrete fracture network framework for
modeling subsurface flow and transport, Comput. Geosci., 84, 10–19, 2015a.

Hyman, J. D., Painter, S. L., Viswanathan, H., Makedonska, N., and Karra, S.:
Influence of injection mode on transport properties in kilometer-scale
three-dimensional discrete fracture networks, Water Resour. Res., 51, 1–20,
2015b.

Johnson, J., Brown, S., and Stockman, H.: Fluid flow and mixing in
rough-walled fracture intersections, J. Geophys. Res.-Sol. Ea., 111, B12206,
https://doi.org/10.1029/2005JB004087, 2006.

Koike, K., Kubo, T., Liu, C., Masoud, A., Amano, K., Kurihara, A., Matsuoka,
T., and Lanyon, B.: 3-D geostatistical modeling of fracture system in a
granitic massif to characterize hydraulic properties and fracture
distribution, Tectonophysics, 660, 1–16, 2015.

Kwicklis, E. M. and Healy, R. W.: Numerical investigation of steady liquid
water flow in a variably saturated fracture network, Water Resour. Res., 29,
4091–4102, 1993.

Lee, I. H. and Ni, C.-F.: Fracture-based modeling of complex flow and
CO_{2} migration in three-dimensional fractured rocks, Comput.
Geosci., 81, 64–77, 2015.

Li, S. G., Liao, H. S., and Ni, C. F.: Stochastic modeling of complex
nonstationary groundwater systems, Adv. Water Resour., 27, 1087–1104, 2004.

Liu, L. and Neretnieks, I.: Analysis of fluid flow and solute transport
through a single fracture with variable apertures intersecting a canister:
Comparison between fractal and Gaussian fractures, Phys. Chem. Earth, 31,
634–639, 2006.

Long, J. C. S., Gilmour, P., and Witherspoon, P. A.: A model for steady fluid
flow in random three-dimensional networks of disc-shaped fractures, Water
Resour. Res., 21, 1105–1115, 1985.

Makedonska, N., Painter, S., Bui, Q., Gable, C., and Karra, S.: Particle
tracking approach for transport in three-dimensional discrete fracture
networks, Computat. Geosci., 19, 1123–1137, 2015.

Ni, C. F. and Li, S. G.: Simple closed form formulas for predicting
groundwater flow model uncertainty in complex, heterogeneous trending media,
Water Resour. Res., 41, W11503, https://doi.org/10.1029/2005WR004143, 2005.

Ni, C. F. and Li, S. G.: Modeling groundwater velocity uncertainty in complex
composite media, Adv. Water Resour., 29, 1866–1875, 2006.

Ni, C. F., Yeh, T. C. J., and Chen, J. S.: Cost-effective hydraulic
tomography surveys for predicting flow and transport in heterogeneous
aquifers, Environ. Sci. Technol., 43, 3720–3727, 2009.

Ni, C. F., Li, S. G., Liu, C. J., and Hsu, S. M.: Efficient conceptual
framework to quantify flow uncertainty in large-scale, highly nonstationary
groundwater systems, J. Hydrol., 384, 297–307, 2010.

Ni, C. F., Lin, C. P., Li, S. G., and Chen, J. S.: Quantifying flow and
remediation zone uncertainties for partially opened wells in heterogeneous
aquifers, Hydrol. Earth Syst. Sci., 15, 2291–2301,
https://doi.org/10.5194/hess-15-2291-2011, 2011.

Odling, N. E.: Scaling and connectivity of joint systems in sandstones from
western Norway, J. Struct. Geol., 19, 1257–1271, 1997.

Painter, S., Cvetkovic, V., Mancillas, J., and Pensado, O.: Time domain
particle tracking methods for simulating transport with retention and
first-order transformation, Water Resour. Res., 44, W01406,
https://doi.org/10.1029/2007WR005944, 2008.

Park, Y.-J., Lee, K.-K., Kosakowski, G., and Berkowitz, B.: Transport
behavior in three-dimensional fracture intersections, Water Resour. Res., 39,
1215, https://doi.org/10.1029/2002WR001801, 2003.

Pichot, G., Erhel, J., and de Dreuzy, J.: A generalized mixed hybrid mortar
method for solving flow in stochastic discrete fracture networks, SIAM J.
Sci. Comput., 34, B86–B105, 2012.

Pruess, K. and Tsang, Y. W.: On two-phase relative permeability and capillary
pressure of rough-walled rock fractures, Water Resour. Res., 26, 1915–1926,
1990.

Stalgorova, E. and Babadagli, T.: Modified Random Walk–Particle Tracking
method to model early time behavior of EOR and sequestration of CO_{2}
in naturally fractured oil reservoirs, J. Petrol. Sci. Eng., 127, 65–81,
2015.

Stephens, M. B., Follin, S., Petersson, J., Isaksson, H., Juhlin, C., and
Simeonov, A.: Review of the deterministic modelling of deformation zones and
fracture domains at the site proposed for a spent nuclear fuel repository,
Sweden, and consequences of structural anisotropy, Tectonophysics, 653,
68–94, 2015.

Trinchero, P., Painter, S., Ebrahimi, H., Koskinen, L., Molinero, J., and
Selroos, J.-O.: Modelling radionuclide transport in fractured media with a
dynamic update of Kd values, Comput. Geosci., 86, 55–63, 2016.

Wang, L. and Cardenas, M. B.: An efficient quasi-3-D particle tracking-based
approach for transport through fractures with application to dynamic
dispersion calculation, J. Contam. Hydrol., 179, 47–54, 2015.

Weng, X., Kresse, O., Chuprakov, D., Cohen, C.-E., Prioul, R., and Ganguly,
U.: Applying complex fracture model and integrated workflow in unconventional
reservoirs, J. Petrol. Sci. Eng., 124, 468–483, 2014.

Wexler, E. J.: Analytical solutions for one-, two-, and three-dimensional
solute transport in ground-water systems with uniform flow, USGS Open-File
Report, 89–56, 1992.

Xu, C. and Dowd, P.: A new computer code for discrete fracture network
modelling, Comput. Geosci., 36, 292–301, 2010.

Yeh, G., Sun, J., Jardine, P., Burger, W., Fang, Y., Li, M., and Siegel, M.:
HYDROGEOCHEM 4.0: A Coupled Model of Fluid Flow, Thermal Transport and
HYDROGEOCHEMical Transport through Saturated-Unsaturated Media: Version 4.0.
ORNL/TM-2004/103, Oak Ridge National Laboratory, Oak Ridge, 2004.

Yeh, G.-T.: On the computation of Darcian velocity and mass balance in the
finite element modeling of groundwater flow, Water Resour. Res., 17,
1529–1534, 1981.

Zafarani, A. and Detwiler, R. L.: An efficient time-domain approach for
simulating Pe-dependent transport through fracture intersections, Adv. Water
Resour., 53, 198–207, 2013.

Zhang, Q.-H.: Finite element generation of arbitrary 3-D fracture networks
for flow analysis in complicated discrete fracture networks, J. Hydrol., 529,
Part 3, 890–908, 2015.

Zheng, C. and Bennett, G. D.: Applied contaminant transport modeling,
Wiley-Interscience New York, 2002.