Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 23, issue 4
Hydrol. Earth Syst. Sci., 23, 1905–1929, 2019
https://doi.org/10.5194/hess-23-1905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 1905–1929, 2019
https://doi.org/10.5194/hess-23-1905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Apr 2019

Research article | 09 Apr 2019

Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka

Thushara De Silva M. and George M. Hornberger
Related authors  
Combined impact of local climate and soil properties on soil moisture patterns
Thushara Gunda, Udeni P. Nawagamuwa, and George M. Hornberger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-357,https://doi.org/10.5194/hess-2017-357, 2017
Manuscript not accepted for further review
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019,https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Time variability and uncertainty in the fraction of young water in a small headwater catchment
Michael Paul Stockinger, Heye Reemt Bogena, Andreas Lücke, Christine Stumpp, and Harry Vereecken
Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019,https://doi.org/10.5194/hess-23-4333-2019, 2019
Short summary
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany
Daniel Rasche, Christian Reinhardt-Imjela, Achim Schulte, and Robert Wenzel
Hydrol. Earth Syst. Sci., 23, 4349–4365, https://doi.org/10.5194/hess-23-4349-2019,https://doi.org/10.5194/hess-23-4349-2019, 2019
Short summary
Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores
Wouter J. M. Knoben, Jim E. Freer, and Ross A. Woods
Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019,https://doi.org/10.5194/hess-23-4323-2019, 2019
Short summary
Cited articles  
Amarasekera, K. N., Lee, R. F., Williams, E. R., and Eltahir, E. A. B.: ENSO and the natural variability in the flow tropical rivers, J. Hydrol., 200, 24–39, https://doi.org/10.1016/S0022-1694(96)03340-9, 1997. 
Analytical Vidhya Team: Tunning the parameters of your Random Forest model, available at: https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/ (last access: 12 March 2018), 2015. 
Analytical Vidhya Team: A Complete Tutorial on Tree Based Modeling from Scratch, available at: https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/ (last access: 12 March 2018), 2016. 
Block, P. and Goddard, L.: Statistical and Dynamical Climate Predictions to Guide Water Resources in Ethiopia, J. Water Resour. Plan. Manage., 138, 287–298, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000181, 2012. 
Breiman, L.: Randomforest2001, Mach. Learn., 45, 5–32, https://doi.org/10.1017/CBO9781107415324.004, 2001. 
Publications Copernicus
Download
Short summary
Season-ahead rainfall forecast is very important for water resource management. Classification methods are used to identify the extreme rainfall classes dry and wet using climate teleconnections. These models can be used for river basin areal rainfall forecast and water resources and power generation planning for climate uncertainty. Water resource management decisions are informed by forecasts of El Niño–Southern Oscillation and Indian Ocean Dipole phenomena.
Season-ahead rainfall forecast is very important for water resource management. Classification...
Citation