Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
HESS | Articles | Volume 23, issue 4
Hydrol. Earth Syst. Sci., 23, 1905–1929, 2019
https://doi.org/10.5194/hess-23-1905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 1905–1929, 2019
https://doi.org/10.5194/hess-23-1905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Apr 2019

Research article | 09 Apr 2019

Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka

Thushara De Silva M. and George M. Hornberger

Related authors

Combined impact of local climate and soil properties on soil moisture patterns
Thushara Gunda, Udeni P. Nawagamuwa, and George M. Hornberger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-357,https://doi.org/10.5194/hess-2017-357, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Quantifying the impacts of human water use and climate variations on recent drying of Lake Urmia basin: the value of different sets of spaceborne and in situ data for calibrating a global hydrological model
Seyed-Mohammad Hosseini-Moghari, Shahab Araghinejad, Mohammad J. Tourian, Kumars Ebrahimi, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 1939–1956, https://doi.org/10.5194/hess-24-1939-2020,https://doi.org/10.5194/hess-24-1939-2020, 2020
Short summary
Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”
Brian Berkowitz and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020,https://doi.org/10.5194/hess-24-1831-2020, 2020
Short summary
Intra-catchment variability of surface saturation – insights from physically based simulations in comparison with biweekly thermal infrared image observations
Barbara Glaser, Marta Antonelli, Luisa Hopp, and Julian Klaus
Hydrol. Earth Syst. Sci., 24, 1393–1413, https://doi.org/10.5194/hess-24-1393-2020,https://doi.org/10.5194/hess-24-1393-2020, 2020
Short summary
Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin
Nicolás Velásquez, Carlos D. Hoyos, Jaime I. Vélez, and Esneider Zapata
Hydrol. Earth Syst. Sci., 24, 1367–1392, https://doi.org/10.5194/hess-24-1367-2020,https://doi.org/10.5194/hess-24-1367-2020, 2020
Short summary
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020

Cited articles

Amarasekera, K. N., Lee, R. F., Williams, E. R., and Eltahir, E. A. B.: ENSO and the natural variability in the flow tropical rivers, J. Hydrol., 200, 24–39, https://doi.org/10.1016/S0022-1694(96)03340-9, 1997. 
Analytical Vidhya Team: Tunning the parameters of your Random Forest model, available at: https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/ (last access: 12 March 2018), 2015. 
Analytical Vidhya Team: A Complete Tutorial on Tree Based Modeling from Scratch, available at: https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/ (last access: 12 March 2018), 2016. 
Block, P. and Goddard, L.: Statistical and Dynamical Climate Predictions to Guide Water Resources in Ethiopia, J. Water Resour. Plan. Manage., 138, 287–298, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000181, 2012. 
Breiman, L.: Randomforest2001, Mach. Learn., 45, 5–32, https://doi.org/10.1017/CBO9781107415324.004, 2001. 
Publications Copernicus
Download
Short summary
Season-ahead rainfall forecast is very important for water resource management. Classification methods are used to identify the extreme rainfall classes dry and wet using climate teleconnections. These models can be used for river basin areal rainfall forecast and water resources and power generation planning for climate uncertainty. Water resource management decisions are informed by forecasts of El Niño–Southern Oscillation and Indian Ocean Dipole phenomena.
Season-ahead rainfall forecast is very important for water resource management. Classification...
Citation