Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 23, issue 4
Hydrol. Earth Syst. Sci., 23, 2187–2205, 2019
https://doi.org/10.5194/hess-23-2187-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 2187–2205, 2019
https://doi.org/10.5194/hess-23-2187-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Apr 2019

Research article | 30 Apr 2019

Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region

Ferdinando Manna et al.
Related authors  
Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy)
V. Allocca, F. Manna, and P. De Vita
Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014,https://doi.org/10.5194/hess-18-803-2014, 2014
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019,https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Time variability and uncertainty in the fraction of young water in a small headwater catchment
Michael Paul Stockinger, Heye Reemt Bogena, Andreas Lücke, Christine Stumpp, and Harry Vereecken
Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019,https://doi.org/10.5194/hess-23-4333-2019, 2019
Short summary
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany
Daniel Rasche, Christian Reinhardt-Imjela, Achim Schulte, and Robert Wenzel
Hydrol. Earth Syst. Sci., 23, 4349–4365, https://doi.org/10.5194/hess-23-4349-2019,https://doi.org/10.5194/hess-23-4349-2019, 2019
Short summary
Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores
Wouter J. M. Knoben, Jim E. Freer, and Ross A. Woods
Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019,https://doi.org/10.5194/hess-23-4323-2019, 2019
Short summary
Cited articles  
Aishlin, P. and McNamara, J. P.: Bedrock infiltration and mountain block recharge accounting using chloride mass balance, Hydrol. Process., 25, 1934–1948, 2011. 
Allegre, V., Brodsky, E. E., Xue, L., Nale, S. M., Parker, B. L., and Cherry, J. A.: Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests, Water Resour. Res., 52, 3113–3126, https://doi.org/10.1002/2015wr017346, 2016. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Fao, Rome, available at: http://www.fao.org/3/X0490E/X0490E00.htm (last access: April 2019), 1998. 
Allocca, V., De Vita, P., Manna, F., and Nimmo, J. R.: Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy, J. Hydrol., 529, 843–853, https://doi.org/10.1016/j.jhydrol.2015.08.032, 2015. 
AquaResource and MWH: Three-Dimensional Groundwater Flow Model Report, Santa Susana Field Laboratory, available at: https://www.dtsc-ssfl.com/files/lib_rcra_groundwater/3d_report/3dreport/REPORT/ThreeDimensionalGroundwaterFlowModelReportNov2007.pdf (last access: April 2019), 2007. 
Publications Copernicus
Download
Short summary
To constrain water fluxes in the subsurface capable of transporting contaminants we assessed the amount of water that moves from surface to groundwater on a plateau near Los Angeles. We found that on average only 16 mm (4 %) of precipitation becomes groundwater annually. However, values vary from 0 to >1000 mm yr−1 due to topography, vegetation and surface geology. The flux is not steady over the year but happens episodically at the end of the wet season or after exceptional precipitation events.
To constrain water fluxes in the subsurface capable of transporting contaminants we assessed the...
Citation