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Text S1 – Bayesian Inference Mapping Application in the Agent-Based Model 

In the field of water resource management, a decision is often made based on 

whether the preceding factor is larger (or less) than a prescribed threshold (i.e., 

exceedance). A simple example is that a farmer’ belief of changing the irrigation area will 

be affected by the forecast of water stored in an upstream reservoir at the beginning of the 

growing season (i.e., water availability). In this study, both the forecast of a certain 

preceding factor 𝑓  (a random variable) and an agent’s belief of taking a specific 

management behavior (or making a decision) 𝜃 can be represented as probabilities shown 

in Equations (S1) and (S2): 

𝑃(𝑓) =
# 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑
 (S1) 

𝑃(𝜃) =
# 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 (= 𝑚𝑎𝑘𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑
 (S2) 

The conditional probability as represented in Equation (S3) describes the probability of a 

preceding factor exceeding its threshold given a specific decision was made.  

 𝑃(𝑓|𝜃) =
𝑃(𝑓 ∩ 𝜃) 

𝑃(𝜃)
 (S3) 

The conditional probability obtained in Equation (S3) is then used to calculate the joint 

probability of both the preceding factor exceeding its threshold and a particular decision 

being made (Equation S4). 

𝑃(𝜃 ∩ 𝑓) = 𝑃(𝑓|𝜃) × 𝑃(𝜃) (S4) 

Alternatively, the joint probability can be computed with Equation (S5). 

𝑃(𝑓 ∩ 𝜃) = 𝑃(𝜃|𝑓) × 𝑃(𝑓) (S5) 

Since the left-hand side of Equation (S4) and (S5) are mathematically equivalent, we can 

write their right-hand side as  

𝑃(𝑓|𝜃) × 𝑃(𝜃) = 𝑃(𝜃|𝑓) × 𝑃(𝑓) (S6) 

Rearranging Equation (S6) provides a solution to 𝑃(𝜃|𝑓) by Equation (S7) 

𝑃(𝜃|𝑓) =
𝑃(𝑓|𝜃) × 𝑃(𝜃)

𝑃(𝑓)
 (S7) 

The marginal probability can be written as:  

𝑃(𝑓) = 𝑃(𝑓 ∩ 𝜃) + 𝑃(𝑓 ∩ 𝜃𝑐) (S8) 

where 𝜃𝑐 means that the management behavior was not made. 𝑃(𝑓 ∩ 𝜃) is the probability 

of the preceding factor exceeding its threshold when the decision was made, while 
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𝑃(𝑓 ∩ 𝜃𝑐) is the probability of the preceding factor exceeding its threshold when the 

decision was not made. Substituting Equation (S8) into Equation (S7): 

𝑃(𝜃|𝑓) =
𝑃(𝑓|𝜃) × 𝑃(𝜃)

𝑃(𝑓 ∩ 𝜃) + 𝑃(𝑓 ∩ 𝜃𝑐)
 (S9) 

Equation (S9) can be rewritten by expanding 𝑃(𝑓 ∩ 𝜃) and 𝑃(𝑓 ∩ 𝜃𝑐),  

𝑃(𝜃|𝑓) =
𝑃(𝑓|𝜃) × 𝑃(𝜃)

𝑃(𝑓|𝜃)𝑃(𝜃) + 𝑃(𝑓|𝜃𝑐)𝑃(𝜃𝑐)
 (S10) 

where 𝑃(𝜃𝑐) = 1 − 𝑃(𝜃) is the probability of not taking the management behavior 𝜃. In 

our case, the information of 𝑓 is coming from RiverWare to ABM and 𝜃 is the result the 

ABM sends back to RiverWare.  

Equation (S9) represents the probability of 𝜃  being made when the preceding factor 

exceeds the given threshold. Similarily, 𝜃 being made when the preceding factor does not 

exceed the threshold (𝑓𝑐) may be expressed as 

𝑃(𝜃|𝑓𝑐) =
𝑃(𝑓𝑐|𝜃) × 𝑃(𝜃)

𝑃( 𝑓𝑐|𝜃)𝑃(𝜃) + 𝑃(𝑓𝑐 |𝜃𝑐)𝑃(𝜃𝑐)
 (S11) 

The overall probability of taking a management behavior 𝑃(𝜃) relying on the preceding 

factor 𝑓 can be written using the law of total probability 

𝑃(𝜃) = 𝑃(𝜃|𝑓) × 𝑃(𝑓) + 𝑃(𝜃|𝑓𝑐) × 𝑃(𝑓𝑐) (S12) 

A solution of 𝑃(𝜃) can be obtained by substituting Equations (10) and (11) into (12)  

𝑃(𝜃) =
𝑃(𝑓|𝜃) × 𝑃(𝜃)

𝑃(𝑓|𝜃)𝑃(𝜃) + 𝑃(𝑓|𝜃𝑐)𝑃(𝜃𝑐)
× 𝑃(𝑓)

+
𝑃(𝑓𝑐|𝜃) × 𝑃(𝜃)

𝑃(𝑓𝑐|𝜃)𝑃(𝜃) + 𝑃(𝑓𝑐|𝜃𝑐)𝑃(𝜃𝑐)
× 𝑃(𝑓𝑐) 

(S13) 

A general form of Equation (13) can be written as (Shafiee-Jood et al., 2017) 

𝑃(𝜃) = ∑ 𝑃(𝜃|𝐹𝑖) × 𝑃(𝐹𝑖)

𝑖

= ∑
𝑃(𝐹𝑖|𝜃)𝑃(𝜃)

∑ 𝑃(𝐹𝑖|Θ𝑗)𝑃(Θ𝑗)𝑗

× 𝑃(𝐹𝑖)

𝑖

 (S14) 

where i is the index for preceding factor and j is the index for management behavior, 𝐹𝑖 ∈

[𝑓, 𝑓𝑐], and Θ𝑗 ∈ [𝜃, 𝜃𝑐]. In this study, we re-name the variables in Equation (13) as 

follows 

{

Γ𝑝𝑟 = 𝑃(𝜃)

Γ𝑝𝑑 = 𝑃(𝑓)

𝜆 = 𝑃(𝑓|𝜃)

 (S15) 

where Γ𝑝𝑟 represents the decision maker or agent’s prior belief of 𝜃, Γ𝑝𝑑 the probabilistic 

forecast of preceding factor 𝑓 , 𝜆  the rate of acceptance of new information which 
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represents a decision maker’s belief about the received information from 𝑓 (belief of the 

forecast/measurement accuracy representing the degree of ambiguity of 𝑓).  

By applying the BI theory to Equation (13) with the expressions in Equation (15), the 

agent’s prior belief of 𝜃, Γ𝑝𝑟
𝑡  at time 𝑡 can be expressed as  

Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1 + (1 − 𝜆)(1 − Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1 − 𝜆)Γ𝑝𝑟

𝑡−1

(1 − 𝜆)Γ𝑝𝑟
𝑡−1 + 𝜆(1 − Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) (S16) 

In Equation (16), the agent’s prior belief of 𝜃 at timestep 𝑡, Γ𝑝𝑟
𝑡 , is updated based on the 

prior belief at previous timestep 𝑡 − 1, Γ𝑝𝑟
𝑡−1, and new incoming information or forecast at 

time 𝑡, Γ𝑝𝑑
𝑡 .  Γ𝑝𝑟

𝑡  lies in between Γ𝑝𝑟
𝑡−1  and Γ𝑝𝑑 . Two extreme cases are described here. 

When 𝜆 = 1, Equation (16) reduces to Γ𝑝𝑟
𝑡 = Γ𝑝𝑑

𝑡 , which indicates that the agent’s belief of 

taking management behavior is purely based on the new incoming information, which 

corresponds to a risk-seeking decision maker. In contrast, when 𝜆 = 0.5, Equation (16) 

becomes  Γ𝑝𝑟
𝑡 = Γ𝑝𝑟

𝑡−1  suggesting that a decision is made based on an agent’s previous 

experiences alone (i.e., the decision maker’s most recent experience). This means that we 

have a risk-averse decision maker who totally ignores the new incoming information (or 

no information arrived) and strictly makes his/her decision based on his/her previous belief. 

In this study, the Γ𝑝𝑟
𝑡  in Equation (16) at each time step is updated by applying the Bayesian 

probability theory to Γ𝑝𝑟 between two consecutive time steps to take the temporal causality 

between the two decisions into account.  
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Text S2 – ODD+D Protocol of Agent-Based Model 

1. Overview 

1.1. Purpose 

The coupled model provides a framework to simulate the action of the agents (farmers’ 

decision on the annual irrigation plan) and interact with the environment which is simulated 

by a River-routing and reservoir management: RiverWare. The model is built for decision 

makers.   

 

1.2. Entities, State Variables, and Scales 

This model is composed of 16 irrigation districts (defined as farmer agents) to investigate 

the humans’ decisions of the irrigation area over the river basin. The RiverWare operates 

on a daily time step, for a period of 85 years (October 1, 1928, to September 30, 2013). 

The ABM operates on an annual time step to interact with the RiverWare. Space is 

characterized in the irrigation area size. 

List of Agents 

Agent Name Sub-Group 
Initial Size 

(acre) 

JicarillaIrr Group1 (Upstream of Navajo Reservoir) 700 

NMPineRiverAreaIrr Group1 (Upstream of Navajo Reservoir) 1420 

TwinRocks Group2 (Animas River – Tributary of San Juan River) 251.3 

NMAnimasIrr Group2 (Animas River – Tributary of San Juan River) 9341.1 

FarmingtonGlade Group2 (Animas River – Tributary of San Juan River) 700 

EchoDitch Group2 (Animas River – Tributary of San Juan River) 1210 

FarmersMutual Group2 (Animas River – Tributary of San Juan River) 3050 

Ralston Group2 (Animas River – Tributary of San Juan River) 407.6 

ArchuletaDitch Group3 (Downstream of Navajo Reservoir) 40 

CitizenDitch Group3 (Downstream of Navajo Reservoir) 3940 

TurleyDitch Group3 (Downstream of Navajo Reservoir) 205 

Hammond Group3 (Downstream of Navajo Reservoir) 40 

FruitlandAndCambridge Group3 (Downstream of Navajo Reservoir) 540 

JewettValley Group3 (Downstream of Navajo Reservoir) 920 

Hogback Group3 (Downstream of Navajo Reservoir) 2140 

CudeiCanal Group3 (Downstream of Navajo Reservoir) 170 

Total Number of Agents in San Juan River Basin 16 

Total Irrigation Area (initial) in San Juan River Basin 25075 

 

The state variables in the model include six system parameters that set a foundation for the 

farmers’ decision-making (e.g. precipitation, reservoir elevation and flow violation). The 

agents have beliefs parameters in Bayesian Inference to quantify their believe on 

information and socioeconomic parameters which acts as external threshold in the Cost-

Loss model.  

List of Parameters 

Parameter Note 
# of 

Parameters 

Upstream Precip. Threshold Apply to all agents: 16 agents in mm 1 

Animas River Precip. 

Threshold 
Apply to agents in group 2: six agents in mm 1 

Downstream Precip. 

Threshold 
Apply to agents in group 3: eight agents in mm 1 
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Navajo Reservoir Elevation Elevation in feet 1 

Frequency of flow violation 
Number of days which the flowrate is below 500 cfs 

at the outlet of San Juan River Basin 
1 

NIIP Diversion threshold One single parameter will be used for all agents. 1 

Cost/Loss Parameter (z) z =
𝐶𝑜𝑠𝑡 (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)

𝐿𝑜𝑠𝑠 (𝐿𝑜𝑠𝑠 𝑜𝑓 𝐸𝑎𝑟𝑛𝑖𝑛𝑔)
 16 

Irr. Area Increment Range from -5% ~ 5% 16 

Farmers’ Belief(λi)  

[0.5≤λ≤1] 

λ: Upstream Precip. -> Navajo Res. Elev. 16 

λ: Upstream Precip. -> Decision Irr. Area 2 

λ: Animas Precip. -> Decision Irr. Area 6 

λ: Downstream Precip. -> Decision Irr. Area 8 

λ: Flow Violation -> Decision Irr. Area 16 

λ: updating Farmer’s belief 16 

Total Number of Parameters  102 

 

1.3. Process overview and schedule 

The ABM-Riverware interaction is triggered at the end of every water year. The state 

variables for the ABM are updated from the. After the ABM computation, newly updated 

irrigation areas and corresponded water diversions are imported to the RiverWare.  

 

2. Design concepts 

2.1. Theoretical and Empirical Background  

This ABM adapt the Theory of Planned Behavior (TPB) to simulate human decision-

making processes. Bayesian Inference (BI) mapping joined with a Cost-Loss (CL) model 

are applied to quantify the TPB. Incorporating BI mapping into an ABM allows an agent’s 

psychological thinking process to be specified by a cognitive map between decisions and 

relevant preceding factors that could affect decision-making. A risk perception parameter 

is used in the BI mapping to represent an agent’s belief on the preceding factors. Integration 

of the CL model addresses an agent’s behavior caused by changing socioeconomic 

conditions. Example cognitive mapping of one agent group is given in the following. We 

test this ABM in a watershed in New Mexico and calibrate it using historical irrigated data 

from the US Bureau of Reclamation. 
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2.2. Individual Decision-Making 

The objective of farmer agents is to make the decisions to expand or shrink their irrigated 

cropland on an annual time step, and these decisions derived from the causal probabilities 

(BI mapping) and following economic decision model, Cost-Loss (CL) model. In this 

model, no multiple level of decision-making included. The basic rationality behind agent 

decision-making in the model is that farmers will make decision based on their belief on 

incoming information as well as the socioeconomic condition at that time.   

Farmers adapt their behavior to changing endogenous (their own belief “λ” of different 

information) and exogenous (precipitation, reservoir elevation and flow violation) state 

variables in BI mapping based on the result of conditional probability calculation. 

Currently, we do not consider cultural value in the model. The spatial aspect is considered 

as multiple agents allocated in different places in the watershed and the temporal aspect is 

considered as the decision-making process is conduct for every year. The uncertainty is 

considered in the λ as well as the randomness of irrigated areas increment of each agent.  

 

2.3. Learning 

The fundamental decision-making process of a farmer is based on the timely developing 

conditional probabilities (30 years of time window) in the BI mapping as well as the annual 

extremity. As time move on, this conditional probability will change since the 30 years of 

time window is different and this affect farmer agents’ decision on irrigated areas. 

 

2.4. Individual Sensing 

The actual irrigated areas change action is made via the Cost-Loss Model and the Cost-

Loss ratio (z) is an exogenous state variable (threshold) that agent will sense. This space 

scale of this Cost-Loss is considered for each agent group. In the current model , we assume 

agent know this variable and did not consider the costs for cognition and the costs for 

gathering this information.  

 

2.5. Individual Prediction 

The historical winter precipitation data from November to February in each year are used 

as a substitute for the snowpack forecast in this ABM model. This historical data assumed 

to be used as the perfect prediction of the snowpack which means we do not allow agents 

be erroneous in this prediction process.      

 

2.6. Interaction 

Agent interact indirectly through their decision on the water usage by changing their 

irrigation areas. Since agents’ decisions change the managing plan in the RiverWare due 

to the dynamic change of the agricultural water usages, the interaction is depend on the 

RiverWare simulation. Current model does not have direct communication and system-

wide coordination. 

 

2.7. Collectives 

In the case study, agents are grouped into three different regions (Collectives). The spatial 

variation of the precipitation (snowpack) is considered in different groups. Within a group, 

the agents share the same systematic parameters and BI structure. Collectives in the model 

are represented by different structure of agent’s cognitive map. For instance, agents in 
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Group 3: Downstream Navajo Reservoir, will be affected the reservoir’s release schedule. 

But agents in Group 1: Upstream Navajo Reservoir, will make their decision without 

considering the reservoir operation.      

 

2.8. Heterogeneity 

Agents are defined heterogeneous in the model. As mentioned in 2.7, different groups of 

agents will have different cognitive maps. Also, the Cost-Loss ratios are different in 

different group to represent the heterogeneous socioeconomic condition. Each agent will 

consider precipitation differently as well. These heterogeneity are considered in each 

agent’s decision-making process.  

 

2.9. Stochasticity 

Stochasticity is included in the model regarding the increasing or decreasing rate of the 

irrigation area. The percentile change with the 2% of maximum limitation is applied after 

the binary decision (0: decreasing and 1: increasing).  

 

2.10. Observation 

The simulated irrigation areas are validated by the historically observations of the irrigation 

area from the US Bureau of Reclamation. The output data from the ABM decisions, the 

areal increments and the actual water diversions, are used for updating the corresponding 

Object/Slow values in the RiverWare.  

 

3. Details 

3.1. Implementation Details 

The ABM model is implemented in MATLAB and the RiverWare is a commercialized 

software which require license to execute. The MATLAB code will be available on the 

project’s GitHub website. The corresponding author can also send the code to anyone who 

is interested in the model. 

 

3.2. Initialization 

The RiverWare, simulates the river-basin operation rules from October 1, 1928, to 

September 30, 2013 (water-year cycle). Before the simulation in the RiverWare, the model 

initialized all input flows (derived from hydrologic models – VIC and StateMob) and 

constant parameters (given by the river basin regulations and the reservoir operation) for 

internal calculations. The initialization is always the same during the simulation because 

the initialization performed once before the beginning of the RiverWare simulation. The 

ABM begins to interact with RiverWare at the end of water year (September 30th, 1929). 

The initial sizes of the irrigation areas are taken from the historical observations from the 

US Bureau of Reclamation.   

 

3.3. Input Data 

Most of the input data-including stream flow at the outlet of the basin, the Navajo Reservoir 

elevation, the irrigation areas and the water diversion for Indian Reservation district (NIIP) 

for the ABM are retrieved from the RiverWare. On the other hand, the precipitation data 

are taken from external sources: ground-based rainfall observatories (rain-gauges) operated 

by National Oceanic Atmospheric Administration (NOAA).  



 

 

8 

 

 

3.4. Sub-models 

There is no sub-models in this study.  
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Figure S1 to Figure S4 

 

Figure S1. An illustration of the two-way coupling process between an agent-based model 

(ABM) and a RiverWare using a built-in function of RiverWare: the data management 

interface (DMI). The figure uses a Water Use Object in RiverWare as an example. The 

DMI retrieves data from targeted Slots (e.g., irrigation area and water demand in 

CitizanDitch irrigation area) in RiverWare and exports the data (text files) to the ABM 

with the path assigned by the “output.ctl” control file. By using exported data and other 

inputs, the ABM makes the necessary calculations for simulating the human decision-

making process (determine the new irrigation are and water demand for the coming year). 

The updated irrigation area and water demand are then input back to the same RiverWare 

Slots designated in the “input.ctl” control file. This process is repeated at the end of each 

water year throughout the model period.   
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Figure S2. Extremities of preceding factor considered by (a) Upstream San Juan River, (b) 

Animas River, and (c) Downstream San Juan agents. 
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Figure S3. The simulated irrigation area changes during 1928 to 2013 from BC-ABM (solid 

red), Non-BC-ABM with extremity (dashed black), and Non-BC-ABM based on single 

preceding factor such as precipitation (solid black), flow violation (solid cyan), and NIIP 

diversion (solid magenta) versus historical irrigation areas (solid blue). 
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Figure S4. (a) Monthly view of days of flow violation with the case of the “Risk Averse”; 

(b) Monthly view of days of flow violation with the case of the “Risk Seeking”; (c) Monthly 

view of Navajo Reservoir Release with the case the “Risk Averse”; (d) Monthly view of 

Navajo Reservoir Release with the case of the “Risk Seeking” 
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