Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 23, issue 5
Hydrol. Earth Syst. Sci., 23, 2439-2459, 2019
https://doi.org/10.5194/hess-23-2439-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 2439-2459, 2019
https://doi.org/10.5194/hess-23-2439-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 May 2019

Research article | 21 May 2019

Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska

Katrina E. Bennett et al.
Related authors  
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709-725, https://doi.org/10.5194/hess-22-709-2018,https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Hydroclimatic variability and predictability: a survey of recent research
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777-3798, https://doi.org/10.5194/hess-21-3777-2017,https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427-3440, https://doi.org/10.5194/hess-21-3427-2017,https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Informing a hydrological model of the Ogooué with multi-mission remote sensing data
Cecile M. M. Kittel, Karina Nielsen, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 1453-1472, https://doi.org/10.5194/hess-22-1453-2018,https://doi.org/10.5194/hess-22-1453-2018, 2018
Short summary
Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India
Gopal Penny, Veena Srinivasan, Iryna Dronova, Sharachchandra Lele, and Sally Thompson
Hydrol. Earth Syst. Sci., 22, 595-610, https://doi.org/10.5194/hess-22-595-2018,https://doi.org/10.5194/hess-22-595-2018, 2018
Short summary
Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach
Gorka Mendiguren, Julian Koch, and Simon Stisen
Hydrol. Earth Syst. Sci., 21, 5987-6005, https://doi.org/10.5194/hess-21-5987-2017,https://doi.org/10.5194/hess-21-5987-2017, 2017
Short summary
A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models
Henning Oppel and Andreas Schumann
Hydrol. Earth Syst. Sci., 21, 4259-4282, https://doi.org/10.5194/hess-21-4259-2017,https://doi.org/10.5194/hess-21-4259-2017, 2017
Short summary
Multi-source hydrological soil moisture state estimation using data fusion optimisation
Lu Zhuo and Dawei Han
Hydrol. Earth Syst. Sci., 21, 3267-3285, https://doi.org/10.5194/hess-21-3267-2017,https://doi.org/10.5194/hess-21-3267-2017, 2017
Short summary
Cited articles  
Arsenault, K. R., Houser, P. R., and De Lannoy, G. J.: Evaluation of the MODIS snow cover fraction product, Hydrol. Process., 28, 980–998, 2014. 
Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA Tech. Rep. NWS 19, Office of Hydrology, National Weather Service, Silver Spring, MD, 150 pp., 1976. 
Anderson, E. A.: Calibration of conceptual hydrologic models for use in river forecasting, Office of Hydrologic Development, US National Weather Service, Silver Spring, MD, 372 pp., available at: https://www.nws.noaa.gov/oh/hrl/modelcalibration/1. Calibration Process/1_Anderson_CalbManual.pdf (last access: 8 May 2019), 2002. 
Anderson, E. A.: Snow Accumulation and Ablation Model – SNOW-17, Nat. Weather Serv. NOAA, 44 pp., available at: http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/22snow17.pdf (last access: 17 August 2018), 2006. 
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Res., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. 
Publications Copernicus
Download
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Remotely sensed snow observations may improve operational streamflow forecasting in remote...
Citation