Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., and Alsdorf, D. E.:
Prospects for river discharge and depth estimation through assimilation of
swath-altimetry into a raster-based hydrodynamics model, Geophys. Res.
Lett., 34, L10403, https://doi.org/10.1029/2007GL029721, 2007. a

Baldassarre, G. D., Schumann, G., and Bates, P. D.: A technique for the
calibration of hydraulic models using uncertain satellite observations of
flood extent, J. Hydrol., 367, 276–282,
https://doi.org/10.1016/j.jhydrol.2009.01.020, 2009. a

Barthélémy, S., Ricci, S., Le Pape, E., Rochoux, M., Thual, O., Goutal, N.,
Habert, J., Piacentini, A., Jonville, G., Zaoui, F., and Gouin, P.:
Ensemble-based algorithm for error reduction in hydraulics in the context of
flood forecasting, E3S Web of Conferences, 7, 18022, 2016. a

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the
Ensemble Transform Kalman Filter, Part I: Theoretical Aspects, Mon. Weather Rev., 129, 420–436,
https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2, 2001. a

Brown, K. M., Hambidge, C. H., and Brownett, J. M.: Progress in operational
flood mapping using satellite synthetic aperture radar (SAR) and airborne
light detection and ranging (LiDAR) data, Prog. Phys. Geog.,
40, 196–214, https://doi.org/10.1177/0309133316633570, 2016. a, b, c

Chini, M., Hostache, R., Giustarini, L., and Matgen, P.: A Hierarchical
Split-Based Approach for Parametric Thresholding of SAR Images: Flood
Inundation as a Test Case, IEEE T. Geosci. Remote, 55, 6975–6988, https://doi.org/10.1109/TGRS.2017.2737664, 2017. a

Clawpack Development Team: Clawpack software, version 5.2.2., available at: http://www.clawpack.org (last access: 18 May 2019), 2014. a

Cooper, E., Dance, S., Garcia-Pintado, J., Nichols, N., and Smith, P.:
Observation impact, domain length and parameter estimation in data
assimilation for flood forecasting, Environ. Modell. Softw., 104,
199–214, https://doi.org/10.1016/j.envsoft.2018.03.013, 2018. a, b, c, d, e, f, g, h, i, j, k

Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a
quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009. a

Evensen, G., Dee, D. P., and Schröter, J.: Parameter Estimation in
Dynamical Models, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-011-5096-5_16, 373–398, 1998. a

Garcia-Pintado, J., Neal, J. C., Mason, D. C., Dance, S. L., and Bates, P. D.:
Scheduling satellite-based SAR acquisition for sequential assimilation of
water level observations into flood modelling, J. Hydrol., 495, 252–266, https://doi.org/10.1016/j.jhydrol.2013.03.050, 2013. a, b, c, d, e, f

Garcia-Pintado, J., Mason, D., Dance, S. L., Cloke, H., Neal, J. C., Freer, J.,
and Bates, P. D.: Satellite-supported flood forecasting in river networks: a
real case study, J. Hydrol., 523, 706–724,
https://doi.org/10.1016/j.jhydrol.2015.01.084, 2015. a, b, c, d, e, f, g

George, D. L.: Augmented Riemann solvers for the shallow water equations over
variable topography with steady states and inundation, J. Comput. Phys., 227, 3089–3113, 2008. a

Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza, D., Pauwels, V. R. N.,
De Lannoy, G. J. M., De Keyser, R., Pfister, L., Hoffmann, L., and Savenije, H. H. G.:
Assimilating SAR-derived water level data into a hydraulic model: a case study, Hydrol.
Earth Syst. Sci., 15, 2349–2365, https://doi.org/10.5194/hess-15-2349-2011, 2011. a, b

Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer,
S., and Matgen, P.: Probabilistic Flood Mapping Using Synthetic Aperture
Radar Data, IEEE T. Geosci. Remote, 54,
6958–6969, https://doi.org/10.1109/TGRS.2016.2592951, 2016. a, b, c, d, e

Golub, G. H. and Van Loan, C. F.: Matrix computations. 1996, Johns Hopkins
University, Press, Baltimore, MD, USA, 374–426, 1996. a

Grimaldi, S., Li, Y., Pauwels, V. R. N., and Walker, J. P.: Remote
Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood
Forecasting Models: Opportunities and Challenges, Surv. Geophys., 37,
977–1034, https://doi.org/10.1007/s10712-016-9378-y, 2016. a

Henry, J.-B., Chastanet, P., Fellah, K., and Desnos, Y.-L.: Envisat
multi/-polarized ASAR data for flood mapping, Int. J. Remote
Sens., 27, 1921–1929, https://doi.org/10.1080/01431160500486724, 2006. a

Horritt, M. and Bates, P.: Evaluation of 1-D and 2-D numerical models for
predicting river flood inundation, J. Hydrol., 268, 87–99,
https://doi.org/10.1016/S0022-1694(02)00121-X, 2002. a

Horritt, M. S., Mason, D. C., and Luckman, A. J.: Flood boundary delineation
from Synthetic Aperture Radar imagery using a statistical active contour
model, Int. J. Remote
Sens., 22, 2489–2507,
https://doi.org/10.1080/01431160116902, 2001. a, b

Hostache, R., Lai, X., Monnier, J., and Puech, C.: Assimilation of spatially
distributed water levels into a shallow-water flood model, Part II: Use of
a remote sensing image of Mosel River, J. Hydrol., 390, 257–268, https://doi.org/10.1016/j.jhydrol.2010.07.003, 2010. a, b

Hostache, R., Matgen, P., and Wagner, W.: Change detection approaches for flood
extent mapping: How to select the most adequate reference image from online
archives?, Int. J. Appl. Earth Obs., 19, 205–213, https://doi.org/10.1016/j.jag.2012.05.003, 2012. a, b

Hostache, R., Chini, M., Giustarini, L., Neal, J., Kavetski, D., Wood, M.,
Corato, G., Pelich, R.-M., and Matgen, P.: Near real-time assimilation of SAR
derived flood maps for improving flood forecasts, Water Resour. Res., 54, 5516–5535, https://doi.org/10.1029/2017WR022205, 2018. a

James, T. S. S., Francesca, P., Paul, B., Jim, F., and Thorsten, W.:
Quantifying the importance of spatial resolution and other factors through
global sensitivity analysis of a flood inundation model, Water Resour. Res., 52, 9146–9163, https://doi.org/10.1002/2015WR018198, 2016. a

Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems,
J. Basic Eng.-T. ASME, 82, 35–45, 1960. a

Kepert, J. D.: On ensemble representation of the observation-error covariance
in the Ensemble Kalman Filter, Ocean Dynam., 54, 561–569,
https://doi.org/10.1007/s10236-004-0104-9, 2004. a

Lai, X. and Monnier, J.: Assimilation of spatially distributed water levels
into a shallow-water flood model, Part I: Mathematical method and test
case, J. Hydrol., 377, 1–11,
https://doi.org/10.1016/j.jhydrol.2009.07.058, 2009. a

LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems, Cambridge
University Press, 2002. a

Livings, D.: Aspects of the Kalman filter, MSc thesis, Unversity of
Reading, available at: http://www.reading.ac.uk/web/FILES/maths/Livings.pdf (last access: 18 May 2019), 2005. a

Livings, D. M., Dance, S. L., and Nichols, N. K.: Unbiased ensemble square root
filters, Physica D, 237, 1021–1028,
https://doi.org/10.1016/j.physd.2008.01.005, 2008. a, b

Maidment, D. and Mays, L.: Applied Hydrology, McGraw-Hill series in water
resources and environmental engineering, Tata McGraw-Hill Education, p. 35, 1988. a

Mandli, K. T., Ahmadia, A. J., Berger, M., Calhoun, D., George, D. L.,
Hadjimichael, Y., Ketcheson, D. I., Lemoine, G. I., and LeVeque, R. J.:
Clawpack: building an open source ecosystem for solving hyperbolic PDEs,
PeerJ Computer Science, 2, e68, https://doi.org/10.7717/peerj-cs.68, 2016. a

Mason, D., Bates, P., and Amico, J. D.: Calibration of uncertain flood
inundation models using remotely sensed water levels, J. Hydrol.,
368, 224–236, https://doi.org/10.1016/j.jhydrol.2009.02.034, 2009. a, b

Mason, D., Schumann, G.-P., Neal, J., Garcia-Pintado, J., and Bates, P.:
Automatic near real-time selection of flood water levels from high resolution
Synthetic Aperture Radar images for assimilation into hydraulic models: A
case study, Remote Sens. Environ., 124, 705–716,
https://doi.org/10.1016/j.rse.2012.06.017, 2012. a, b, c, d, e

Mason, D. C., Dance, S. L., Vetra-Carvalho, S., and Cloke, H. L.: Robust
algorithm for detecting floodwater in urban areas using synthetic aperture
radar images, J. Appl. Remote Sens., 12, 045011,
https://doi.org/10.1117/1.JRS.12.045011, 2018. a

Matgen, P., Schumann, G., Henry, J.-B., Hoffmann, L., and Pfister, L.:
Integration of SAR-derived river inundation areas, high-precision
topographic data and a river flow model toward near real-time flood
management, Int. J. Appl. Earth Obs., 9, 247–263, https://doi.org/10.1016/j.jag.2006.03.003, 2007. a, b, c

Matgen, P., Montanari, M., Hostache, R., Pfister, L., Hoffmann, L., Plaza, D.,
Pauwels, V. R. N., De Lannoy, G. J. M., De Keyser, R., and Savenije, H. H. G.:
Towards the sequential assimilation of SAR-derived water stages into hydraulic
models using the Particle Filter: proof of concept, Hydrol. Earth Syst. Sci., 14,
1773–1785, https://doi.org/10.5194/hess-14-1773-2010, 2010. a, b

Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and
Savenije, H.: Towards an automated SAR-based flood monitoring system: Lessons
learned from two case studies, Phys. Chem. Earth, 36, 241–252, https://doi.org/10.1016/j.pce.2010.12.009, 2011. a

Navon, I.: Practical and theoretical aspects of adjoint parameter estimation
and identifiability in meteorology and oceanography, Dynam. Atmos. Oceans, 27, 55–79, https://doi.org/10.1016/S0377-0265(97)00032-8, 1998. a

Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., and Pappenberger,
F.: A data assimilation approach to discharge estimation from space,
Hydrol. Proc., 23, 3641–3649, https://doi.org/10.1002/hyp.7518, 2009. a, b, c

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza,
M., Kalnay, E., Patil, D. J., and Yorke, J. A.: A local ensemble Kalman
filter for atmospheric data assimilation, Tellus A, 56, 415–428,
https://doi.org/10.3402/tellusa.v56i5.14462, 2004. a

Oubanas, H.: Variational assimilation of satellite data into a full
saint-venant based hydraulic model in the context of ungauged basins,
Theses, 1–202, 2018. a

Oubanas, H., Gejadze, I., Malaterre, P.-O., Durand, M., Wei, R., Frasson, R.
P. M., and Domeneghetti, A.: Discharge Estimation in Ungauged Basins Through
Variational Data Assimilation: The Potential of the SWOT Mission, Water
Resour. Res., 54, 2405–2423, https://doi.org/10.1002/2017WR021735,
2018a. a

Oubanas, H., Gejadze, I., Malaterre, P.-O., and Mercier, F.: River discharge
estimation from synthetic SWOT-type observations using variational data
assimilation and the full Saint-Venant hydraulic model, J. Hydrol.,
559, 638–647, https://doi.org/10.1016/j.jhydrol.2018.02.004, 2018b. a

Petrie, R. E. and Dance, S. L.: Ensemble-based data assimilation and the
localisation problem, Weather, 65, 65–69, https://doi.org/10.1002/wea.505, 2010. a

Ricci, S., Piacentini, A., Thual, O., Le Pape, E., and Jonville, G.: Correction of
upstream flow and hydraulic state with data assimilation in the context of flood
forecasting, Hydrol. Earth Syst. Sci., 15, 3555–3575, https://doi.org/10.5194/hess-15-3555-2011, 2011. a

Rochoux, Mélanie, C.: Towards a more comprehensive monitoring of wildfire
spread: Contributions of model evaluation and data assimilation strategies,
Theses, Ecole Centrale Paris, available at: https://tel.archives-ouvertes.fr/tel-01130329 (last access: 18 May 2019),
2014. a

Rochoux, M., Collin, A., Zhang, C., Trouvé, A., Lucor, D., and Moireau, P.:
Front shape similarity measure for shape-oriented sensitivity analysis and
data assimilation for Eikonal equation, available at: https://hal.inria.fr/hal-01625575 (last access: 19 May 2019), ESAIM: Proceedings and Surveys,
1–22, 2017. a

Rochoux, M. C., Ricci, S., Lucor, D., Cuenot, B., and Trouvé, A.: Towards predictive
data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter
based on a Polynomial Chaos surrogate model for parameter estimation, Nat. Hazards Earth
Syst. Sci., 14, 2951–2973, https://doi.org/10.5194/nhess-14-2951-2014, 2014. a

Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., and Pappenberger, F.:
Progress in integration of remote sensing derived flood extent and stage data
and hydraulic models, Rev. Geophys., 47, RG4001, https://doi.org/10.1029/2008RG000274, 2009. a

Smith, P. J., Dance, S. L., Baines, M. J., Nichols, N. K., and Scott, T. R.:
Variational data assimilation for parameter estimation: application to a
simple morphodynamic model, Ocean Dynam., 59, 697,
https://doi.org/10.1007/s10236-009-0205-6, 2009. a

Smith, P. J., Dance, S. L., and Nichols, N. K.: A hybrid data assimilation
scheme for model parameter estimation: application to morphodynamic
modelling, 10th ICFD Conference Series on
Numerical Methods for Fluid Dynamics (ICFD 2010), Computers & Fluids, 46, 436–441, 2011. a

Smith, P. J., Thornhill, G. D., Dance, S. L., Lawless, A. S., Mason, D. C., and
Nichols, N. K.: Data assimilation for state and parameter estimation:
application to morphodynamic modelling, Q. J. Roy. Meteor. Soc., 139, 314–327, 2013. a

Stephens, E., Schumann, G., and Bates, P.: Problems with binary pattern
measures for flood model evaluation, Hydrol. Proc., 28, 4928–4937,
https://doi.org/10.1002/hyp.9979, 2013. a

Vörösmarty, C., Askew, A., Grabs, W., Barry, R., Birkett, C., Döll, P.,
Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J., Keeler, M.,
Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S., Takeuchi, K., and
Webster, F.: Global water data: A newly endangered species, Eos, 82, 54–58, https://doi.org/10.1029/01EO00031,
2001.
a

Waller, J. A., García-Pintado, J., Mason, D. C., Dance, S. L., and Nichols,
N. K.: Technical note: Assessment of observation quality for data assimilation
in flood models, Hydrol. Earth Syst. Sci., 22, 3983–3992, https://doi.org/10.5194/hess-22-3983-2018, 2018. a, b

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, 410–411,
2011. a

Wood, M.: Improving hydraulic model parameterization using SAR data, PhD thesis, University of Bristol, 1–212, 2016. a, b

Wood, M., Hostache, R., Neal, J., Wagener, T., Giustarini, L., Chini, M.,
Corato, G., Matgen, P., and Bates, P.: Calibration of channel depth and friction parameters
in the LISFLOOD-FP hydraulic model using medium-resolution SAR data and identifiability
techniques, Hydrol. Earth Syst. Sci., 20, 4983–4997, https://doi.org/10.5194/hess-20-4983-2016, 2016. a