Alebregtse, N. C. and de Swart, H. E.: Effect of river discharge and geometry
on tides and net water transport in an estuarine network, an idealized model
applied to the Yangtze Estuary, Cont. Shelf. Res., 123, 29–49,
https://doi.org/10.1016/j.csr.2016.003.028, 2016. a, b, c, d, e

Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., and Hoekstra, P.:
Subtidal water level variation controlled by river flow and tides, Water
Resour. Res., 45, W10420, https://doi.org/10.1029/2009WR008167, 2009. a, b, c

Cai, H., Savenije, H. H. G., and Toffolon, M.: A new analytical framework for
assessing the effect of sea-level rise and dredging on tidal damping in
estuaries, J. Geophys. Res., 117, C09023, https://doi.org/10.1029/2012JC008000,
2012a. a

Cai, H., Savenije, H. H. G., Yang, Q., Ou, S., and Lei, Y.: Influence of
river
discharge and dredging on tidal wave propagation: Modaomen Estuary case, J.
Hydraul. Eng., 138, 885–896, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000594,
2012b. a, b

Cai, H., Savenije, H. H. G., and Jiang, C.: Analytical approach for predicting fresh
water discharge in an estuary based on tidal water level observations,
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, 2014a. a, b, c, d

Cai, H., Savenije, H. H. G., and Toffolon, M.: Linking the river to the
estuary: influence of river discharge on tidal damping, Hydrol. Earth Syst.
Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, 2014b. a, b, c, d, e, f, g, h, i, j, k, l, m, n

Cai, H., Savenije, H. H. G., Zuo, S., Jiang, C., and Chua, V.: A predictive
model for salt intrusion in estuaries applied to the Yangtze estuary, J.
Hydrol., 529, 1336–1349, https://doi.org/10.1016/j.jhydrol.2015.08.050, 2015. a

Cai, H., Savenije, H. H. G., Jiang, C., Zhao, L., and Yang, Q.: Analytical
approach for determining the mean water level profile in an estuary with
substantial fresh water discharge, Hydrol. Earth Syst. Sci., 20, 1177–1195,
https://doi.org/10.5194/hess-20-1177-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u

Cai, H., Yang, Q., Zhang, Z., Guo, X., Liu, F., and Ou, S.: Impact of
river-tide dynamics on the temporal-spatial distribution of residual water
levels in the Pearl River channel networks, Estuar. Coast, 41, 1885–1903, https://doi.org/10.1007/s12237-018-0399-2, 2018. a

Cai, H., Zhang, X., Zhang, M., Guo, L., Liu, F., and Yang, Q.: Impacts of Three Gorges Dam's operation on spatial–temporal patterns of tide–river dynamics in the Yangtze River estuary, China, Ocean Sci., 15, 583–599, https://doi.org/10.5194/os-15-583-2019, 2019. a

Dronkers, J. J.: Tidal computations in River and Coastal Waters, Elsevier,
New
York, 1–518, 1964. a, b, c

Friedrichs, C. T. and Aubrey, D. G.: Non-linear tidal distortion in shallow
well-mixed estuaries: A synthesis, Estuar. Coast Shelf S., 27, 521–545,
https://doi.org/10.1016/0272-7714(88)90082-0, 1988. a

Godin, G.: Modification of River Tides by the Discharge, J. Waterw. Port
C-Asce, 111, 257–274, https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(257), 1985. a, b

Godin, G.: Compact Approximations to the Bottom Friction Term, for the Study
of
Tides Propagating in Channels, Cont. Shelf. Res., 11, 579–589,
https://doi.org/10.1016/0278-4343(91)90013-V, 1991. a

Godin, G.: The propagation of tides up rivers with special considerations on
the upper Saint Lawrence river, Estuar. Coast Shelf S., 48, 307–324, https://doi.org/10.1006/ecss.1998.0422, 1999. a, b, c

Godin, G. and Martinez, A.: Numerical Experiments to Investigate the Effects
of
Quadratic Friction on the Propagation of Tides in a Channel, Cont. Shelf.
Res., 14, 723–748, https://doi.org/10.1016/0278-4343(94)90070-1, 1994. a

Guo, L., van der Wegen, M., Roelvink, J. A., and He, Q.: The role of river
flow
and tidal asymmetry on 1-D estuarine morphodynamics, J. Geophys. Res., 119,
2315–2334, https://doi.org/10.1002/2014JF003110, 2014. a, b

Guo, L., van der Wegen, M., Jay, D. A., Matte, P., Wang, Z. B., Roelvink,
D. J., and He, Q.: River-tide dynamics: Exploration of non-stationary and
nonlinear tidal behavior in the Yangtze River estuary, J. Geophys. Res.,
120, 3499–3521, https://doi.org/10.1002/2014JC010491, 2015. a, b, c, d, e, f

Guo, L. C., van der Wegen, M., Wang, Z. B., Roelvink, D., and He, Q.:
Exploring
the impacts of multiple tidal constituents and varying river flow on
long-term, large-scale estuarine morphodynamics by means of a 1-D model, J.
Geophys. Res., 121, 1000–1022, https://doi.org/10.1002/2016JF003821, 2016. a, b

Hoitink, A. J. F. and Jay, D. A.: Tidal river dynamics: Implications for
deltas, Rev. Geophys., 54, 240–272, https://doi.org/10.1002/2015RG000507, 2016. a

Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y., and Kastner, K.:
Tidal controls on river delta morphology, Nat. Geosci., 10, 637–645,
https://doi.org/10.1038/ngeo3000, 2017. a

Horrevoets, A. C., Savenije, H. H. G., Schuurman, J. N., and Graas, S.: The
influence of river discharge on tidal damping in alluvial estuaries, J.
Hydrol., 294, 213–228, https://doi.org/10.1016/j.jhydrol.2004.02.012, 2004. a, b

Jay, D. A.: Green Law Revisited – Tidal Long-Wave Propagation in Channels
with
Strong Topography, J. Geophys. Res., 96, 20585–20598,
https://doi.org/10.1029/91JC01633, 1991. a

Jay, D. A. and Flinchem, E. P.: Interaction of fluctuating river flow with a
barotropic tide: A demonstration of wavelet tidal analysis methods, J.
Geophys. Res., 102, 5705–5720, https://doi.org/10.1029/96JC00496, 1997. a

Jay, D. A. and Flinchem, E. P.: A comparison of methods for analysis of tidal
records containing multi-scale non-tidal background energy, Cont. Shelf.
Res., 19, 1695–1732, https://doi.org/10.1016/S0278-4343(99)00036-9, 1999. a

Jay, D. A., Leffler, K., and Degens, S.: Long-Term Evolution of Columbia
River
Tides, J. Waterw. Port C-Asce, 137, 182–191, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000082, 2011. a, b

Jay, D. A., Leffler, K., Diefenderfer, H. L., and Borde, A. B.: Tidal-Fluvial
and Estuarine Processes in the Lower Columbia River: I. Along-Channel Water
Level Variations, Pacific Ocean to Bonneville Dam, Estuar. Coast, 38,
415–433, https://doi.org/10.1007/s12237-014-9819-0, 2015. a

Kuang, C., Chen, W., Gu, J., Su, T., Song, H., Ma, Y., and Dong, Z.: River
discharge contribution to sea-level rise in the Yangtze River Estuary,
China, Cont. Shelf. Res., 134, 63–75, https://doi.org/10.1016/j.csr.2017.01.004, 2017. a

Kukulka, T. and Jay, D. A.: Impacts of Columbia River discharge on salmonid
habitat: 1. A nonstationary fluvial tide model, J. Geophys. Res., 108, 3293 https://doi.org/10.1029/2002JC001382, 2003a. a, b

Kukulka, T. and Jay, D. A.: Impacts of Columbia River discharge on salmonid
habitat: 2. Changes in shallow-water habitat, J. Geophys. Res., 108, 3294
https://doi.org/10.1029/2003JC001829, 2003b. a

Lamb, M. P., Nittrouer, J. A., Mohrig, D., and Shaw, J.: Backwater and river
plume controls on scour upstream of river mouths: Implications for
fluvio-deltaic morphodynamics, J. Geophys. Res., 117, F01002,
https://doi.org/10.1029/2011JF002079, 2012. a, b

LeBlond, P. H.: Forced fortnightly tides in shallow waters, Atmos. Ocean, 17,
253–264, https://doi.org/10.1080/07055900.1979.9649064, 1979. a, b

Leonardi, N., Kolker, A. S., and Fagherazzi, S.: Interplay between river
discharge and tides in a delta distributary, Adv. Water Resour., 80, 69–78,
https://doi.org/10.1016/j.advwatres.2015.03.005, 2015. a, b

Lu, S., Tong, C., Lee, D. Y., Zheng, J., Shen, J., Zhang, W., and Yan, Y.:
Propagation of tidal waves up in Yangtze Estuary during the dry season, J.
Geophys. Res., 120, 6445–6473, https://doi.org/10.1002/2014JC010414, 2015. a

Matte, P., Jay, D. A., and Zaron, E. D.: Adaptation of Classical Tidal
Harmonic
Analysis to Nonstationary Tides, with Application to River Tides, J. Atmos.
Ocean Tech., 30, 569–589, https://doi.org/10.1175/Jtech-D-12-00016.1, 2013. a

Matte, P., Secretan, Y., and Morin, J.: Temporal and spatial variability of
tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An
application of nonstationary tidal harmonic analysis, J. Geophys. Res., 119,
5724–5744, https://doi.org/10.1002/2014JC009791, 2014. a

Matte, P., Secretan, Y., and Morin, J.: Reconstruction of Tidal Discharges in
the St. Lawrence Fluvial Estuary: The Method of Cubature Revisited, J.
Geophys. Res., 123, 5500–5524, https://doi.org/10.1029/2018JC013834, 2018. a, b

Matte, P., Secretan, Y., and Morin, J.: Drivers of residual and tidal flow
variability in the St. Lawrence fluvial estuary: Influence on tidal wave
propagation, Cont. Shelf. Res., 174, 158–173, https://doi.org/10.1016/j.csr.2018.12.008, 2019. a, b

Parker, B. B.: The relative importance of the various nonlinear mechanisms in
a
wide range of tidal interactions, in: Tidal Hydrodynamics, edited by: Parker, B., John Wiley and Sons, Hoboken, N. J., 237–268, 1991. a

Sassi, M. G. and Hoitink, A. J. F.: River flow controls on tides and
tide-mean
water level profiles in a tidal freshwater river, J. Geophys. Res., 118,
4139–4151, https://doi.org/10.1002/Jgrc.20297, 2013. a, b, c

Savenije, H. H. G.: Salinity and Tides in Alluvial Estuaries, Elsevier, New
York, 1–194, 2005. a, b, c

Savenije, H. H. G.: Salinity and Tides in Alluvial Estuaries, completely
revised 2 Edn, https://salinityandtides.com/ (last access: 10 June 2015), 2012.
a, b, c, d

Savenije, H. H. G., Toffolon, M., Haas, J., and Veling, E. J. M.: Analytical
description of tidal dynamics in convergent estuaries, J. Geophys. Res., 113,
C10025, https://doi.org/10.1029/2007JC004408, 2008. a

Shi, S., Cheng, H., Xuan, X., Hu, F., Yuan, X., Jiang, Y., and Zhou, Q.:
Fluctuations in the tidal limit of the Yangtze River estuary in the last
decade, Sci. China Earth Sci., 8, 1136–1147, https://doi.org/10.1007/s11430-017-9200-4, 2018. a, b

Vignoli, G., Toffolon, M., and Tubino, M.: Non-linear frictional residual
effects on tide propagation, in: Proceedings of XXX IAHR Congress, Vol. A,
24–29 August 2003, Thessaloniki, Greece, 291–298, 2003. a

Zhang, E. F., Savenije, H. H. G., Chen, S. L., and Mao, X. H.: An analytical
solution for tidal propagation in the Yangtze Estuary, China, Hydrol. Earth
Syst. Sci., 16, 3327–3339, https://doi.org/10.5194/hess-16-3327-2012, 2012. a

Zhang, F., Sun, J., Lin, B., and Huang, G.: Seasonal hydrodynamic
interactions
between tidal waves and river flows in the Yangtze Estuary, J. Mar. Syst., 186, 17–28, https://doi.org/10.1016/j.jmarsys.2018.05.005, 2018a. a, b, c, d

Zhang, M., Townend, I., Cai, H., and Zhou, Y.: Seasonal variation of tidal
prism and energy in the Changjiang River estuary: A numerical study,
Chin. J. Oceanol. Limn., 34, 219–230, https://doi.org/10.1007/s00343-015-4302-8, 2015a. a, b, c

Zhang, M., Townend, I., Cai, H., and Zhou, Y.: Seasonal variation of river
and
tide energy in the Yangtze estuary, China, Earth Surf. Proc. Land., 41, 98–116, https://doi.org/10.1002/esp.3790, 2015b. a, b, c

Zhang, W., Feng, H. C., Hoitink, A. J. F., Zhu, Y. L., and Gong, F.: Tidal
impacts on the subtidal flow division at the main bifurcation in the Yangtze
River Delta, Eastuar. Coast. Shelf S., 196, 301–314,
https://doi.org/10.1016/j.ecss.2017.07.008, 2017, 2017. a

Zhang, W., Cao, Y., Zhu, Y., Zheng, J., Ji, X., Xu, Y., Wu, Y., and Hoitink,
A.: Unravelling the causes of tidal asymmetry in deltas, J. Hydrol., 564,
588–604, https://doi.org/10.1016/j.jhydrol.2018.07.023, 2018b. a

Zhou, Z., Coco, G., Townend, I., Olabarrieta, M., van der Wegen, M., Gong,
Z.,
D'Alpaos, A., Gao, S., Jaffe, B. E., Gelfenbaum, G., He, Q., Wang, Y.,
Lanzoni, S., Wang, Z. B., Winterwerp, H., and Zhang, C.: Is “Morphodynamic
Equilibrium” an oxymoron, Earth-Sci. Rev., 165, 257–267,
https://doi.org/10.1016/j.earscirev.2016.12.002, 2017. a

Zhou, Z., Coco, G., Townend, I., Gong, Z., Wang, Z. B., and Zhang, C. K.: On
the stability relationships between tidal asymmetry and morphologies of tidal
basins and estuaries, Earth Surf. Proc. Land., 43, 1943–1959,
https://doi.org/10.1002/esp.4366, 2018. a