Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 303–349, 2019
https://doi.org/10.5194/hess-23-303-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 303–349, 2019
https://doi.org/10.5194/hess-23-303-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jan 2019

Research article | 18 Jan 2019

Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark tests

James W. Kirchner

Related authors

Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020,https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020,https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary
Technical note: An improved discharge sensitivity metric for young water fractions
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020,https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
The pulse of a montane ecosystem: coupled daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen and Independence Creeks, Sierra Nevada, USA
James W. Kirchner, Sarah E. Godsey, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-77,https://doi.org/10.5194/hess-2020-77, 2020
Preprint under review for HESS
Short summary
Averaging over spatiotemporal heterogeneity substantially biases evapotranspiration rates in a mechanistic large-scale land evaporation model
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-46,https://doi.org/10.5194/hess-2020-46, 2020
Preprint under review for HESS
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A line-integral-based method to partition climate and catchment effects on runoff
Mingguo Zheng
Hydrol. Earth Syst. Sci., 24, 2365–2378, https://doi.org/10.5194/hess-24-2365-2020,https://doi.org/10.5194/hess-24-2365-2020, 2020
Short summary
Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020,https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
On the flood peak distributions over China
Long Yang, Lachun Wang, Xiang Li, and Jie Gao
Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019,https://doi.org/10.5194/hess-23-5133-2019, 2019
New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019,https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Does the weighting of climate simulations result in a better quantification of hydrological impacts?
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019,https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary

Cited articles

Bansah, S. and Ali, G.: Evaluating the effects of tracer choice and end-member definitions on hydrograph separation results across nested, seasonally cold watersheds, Water Resour. Res., 53, 8851–8871, https://doi.org/10.1002/2016WR020252, 2017. 
Bayley, G. V. and Hammersley, J. M.: The effective number of independent observations in an autocorrelated time series, J. R. Stat. Soc., 8, 184–197, https://doi.org/10.2307/2983560, 1946. 
Benettin, P., van der Velde, Y., van der Zee, S., Rinaldo, A., and Botter, G.: Chloride circulation in a lowland catchment and the formulation of transport by travel time distributions, Water Resour. Res., 49, 4619–4632, https://doi.org/10.1002/wrcr.20309, 2013. 
Benettin, P., Kirchner, J., Rinaldo, A., and Botter, G.: Modeling chloride transport using travel-time distributions at Plynlimon, Wales, Water Resour. Res., 51, 3259–3276, https://doi.org/10.1002/2014WR016600, 2015. 
Benettin, P., Volkmann, T. H. M., von Freyberg, J., Frentress, J., Penna, D., Dawson, T. E., and Kirchner, J. W.: Effects of climatic seasonality on the isotopic composition of evaporating soil waters, Hydrol. Earth Syst. Sci., 22, 2881–2890, https://doi.org/10.5194/hess-22-2881-2018, 2018. 
Publications Copernicus
Download
Short summary
How long does it take for raindrops to become streamflow? Here I propose a new approach to this old problem. I show how we can use time series of isotope data to measure the average fraction of same-day rainfall appearing in streamflow, even if this fraction varies greatly from rainstorm to rainstorm. I show that we can quantify how this fraction changes from small rainstorms to big ones, and from high flows to low flows, and how it changes with the lag time between rainfall and streamflow.
How long does it take for raindrops to become streamflow? Here I propose a new approach to this...
Citation