Ajami, N. K., Duan, Q. Y., and Sorooshian, S.: An integrated hydrologic
Bayesian multimodel combination framework: Confronting input, parameter, and
model structural uncertainty in hydrologic prediction, Water Resour. Res.,
43, W01403, https://doi.org/10.1029/2005wr004745, 2007.

Bracken, C., Holman, K. D., Rajagopalan, B., and Moradkhani, H.: A Bayesian
Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency
Analysis, Water Resour. Res., 54, 243–255, https://doi.org/10.1002/2017wr020403, 2018.

Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter
instability: A source of additional uncertainty in estimating the
hydrological impacts of climate change?, J. Hydrol., 476, 410–425,
https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.

Broderick, C., Matthews, T., Wilby, R. L., Bastola, S., and Murphy, C.:
Transferability of hydrological models and ensemble averaging methods
between contrasting climatic periods, Water Resour. Res., 52, 8343–8373,
https://doi.org/10.1002/2016wr018850, 2016.

Cha, Y., Park, S. S., Lee, H. W., and Stow, C. A.: A Bayesian hierarchical
approach to model seasonal algal variability along an upstream to downstream
river gradient, Water Resour. Res., 52, 348–357, https://doi.org/10.1002/2015wr017327, 2016.

Chen, X., Hao, Z., Devineni, N., and Lall, U.: Climate information based streamflow and rainfall forecasts for Huai River basin using hierarchical Bayesian modeling, Hydrol. Earth Syst. Sci., 18, 1539–1548, https://doi.org/10.5194/hess-18-1539-2014, 2014.

Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., Kirono, D.
G. C., and Viney, N. R.: Estimating climate change impact on runoff across
southeast Australia: Method, results, and implications of the modeling
method, Water Resour. Res., 45, W10414, https://doi.org/10.1029/2008wr007338, 2009.

Chiew, F. H. S., Potter, N. J., Vaze, J., Petheram, C., Zhang, L., Teng, J.,
and Post, D. A.: Observed hydrologic non-stationarity in far south-eastern
Australia: implications for modelling and prediction, Stoch. Environ. Res.
Risk Assess., 28, 3–15, https://doi.org/10.1007/s00477-013-0755-5, 2014.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De
Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B.,
Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G.,
Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S.,
Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and
Valentini, R.: Europe-wide reduction in primary productivity caused by the
heat and drought in 2003, Nature, 437, 529–533, https://doi.org/10.1038/nature03972, 2005.

Clarke, R. T.: Hydrological prediction in a non-stationary world, Hydrol. Earth Syst. Sci., 11, 408–414, https://doi.org/10.5194/hess-11-408-2007, 2007.

Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.:
Long-term aridity changes in the western United States, Science, 306,
1015–1018, https://doi.org/10.1126/science.1102586, 2004.

Cooley, D., Nychka, D., and Naveau, P.: Bayesian spatial modeling of extreme
precipitation return levels, J. Am. Stat. Assoc., 102, 824–840,
https://doi.org/10.1198/016214506000000780, 2007.

Coron, L., Andreassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M.,
and Hendrickx, F.: Crash testing hydrological models in contrasted climate
conditions: An experiment on 216 Australian catchments, Water Resour. Res.,
48, W05552, https://doi.org/10.1029/2011wr011721, 2012.

Deng, C., Liu, P., Guo, S., Li, Z., and Wang, D.: Identification of hydrological model parameter variation using
ensemble Kalman filter, Hydrol. Earth Syst. Sci., 20, 4949–4961, https://doi.org/10.5194/hess-20-4949-2016, 2016.

Deng, C., Liu, P., Wang, D. B., and Wang, W. G.: Temporal variation and
scaling of parameters for a monthly hydrologic model, J. Hydrol., 558,
290–300, https://doi.org/10.1016/j.jhydrol.2018.01.049, 2018.

Duan, Q. Y., Ajami, N. K., Gao, X. G., and Sorooshian, S.: Multi-model
ensemble hydrologic prediction using Bayesian model averaging, Adv. Water
Resour., 30, 1371–1386, https://doi.org/10.1016/j.advwatres.2006.11.014, 2007.

Ekstrom, M., Gutmann, E. D., Wilby, R. L., Tye, M. R., and Kirono, D. G. C.:
Robustness of hydroclimate metrics for climate change impact research, WIREs Water, 5, e1288, https://doi.org/10.1002/wat2.1288, 2018.

Fowler, K. J. A., Peel, M. C., Western, A. W., Zhang, L., and Peterson, T.
J.: Simulating runoff under changing climatic conditions: Revisiting an
apparent deficiency of conceptual rainfall-runoff models, Water Resour.
Res., 52, 1820–1846, https://doi.org/10.1002/2015wr018068, 2016.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D.:
Bayesian Data Analysis, third edn., CRC Press, London, UK, 2013.

Guo, D. L., Westra, S., and Maier, H. R.: Impact of evapotranspiration
process representation on runoff projections from conceptual rainfall-runoff
models, Water Resour. Res., 53, 435–454, https://doi.org/10.1002/2016wr019627, 2017.

Heuvelmans, G., Muys, B., and Feyen, J.: Regionalisation of the parameters
of a hydrological model: Comparison of linear regression models with
artificial neural nets, J. Hydrol., 319, 245–265,
https://doi.org/10.1016/j.jhydrol.2005.07.030, 2006.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q.
N., Yen, N. C., Tung, C. C., and Liu, H. H.: The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time
series analysis, P. Roy. Soc. A-Math. Phy., 454, 903–995,
https://doi.org/10.1098/rspa.1998.0193, 1998.

Huang, N. E., Shen, Z., and Long, S. R.: A new view of nonlinear water
waves: The Hilbert spectrum, Annu. Rev. Fluid Mech., 31, 417–457,
https://doi.org/10.1146/annurev.fluid.31.1.417, 1999.

Lebecherel, L., Andreassian, V., and Perrin, C.: On evaluating the
robustness of spatial-proximity-based regionalization methods, J. Hydrol.,
539, 196–203, https://doi.org/10.1016/j.jhydrol.2016.05.031, 2016.

Lima, C. H. R. and Lall, U.: Hierarchical Bayesian modeling of multisite
daily rainfall occurrence: Rainy season onset, peak, and end, Water Resour.
Res., 45, W07422, https://doi.org/10.1029/2008wr007485, 2009.

Lima, C. H. R., Lall, U., Troy, T., and Devineni, N.: A hierarchical
Bayesian GEV model for improving local and regional flood quantile
estimates, J. Hydrol., 541, 816–823, https://doi.org/10.1016/j.jhydrol.2016.07.042, 2016.

Liu, P., Li, L. P., Chen, G. J., and Rheinheimer, D. E.: Parameter
uncertainty analysis of reservoir operating rules based on implicit
stochastic optimization, J. Hydrol., 514, 102–113,
https://doi.org/10.1016/j.jhydrol.2014.04.012, 2014.

Liu, Y. Q. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an
integrated data assimilation framework, Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006wr005756, 2007.

Merz, R. and Bloschl, G.: Regionalisation of catchment model parameters, J.
Hydrol., 287, 95–123, https://doi.org/10.1016/j.jhydrol.2003.09.028, 2004.

Merz, R., Parajka, J., and Bloschl, G.: Time stability of catchment model
parameters: Implications for climate impact analyses, Water Resour. Res.,
47, W02531, https://doi.org/10.1029/2010wr009505, 2011.

Moore, R. D. and Wondzell, S. M.: Physical hydrology and the effects of
forest harvesting in the Pacific Northwest: A review, J. Am. Water Resour.
Assoc., 41, 763–784, 2005.

Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S.: Uncertainty
assessment of hydrologic model states and parameters: Sequential data
assimilation using the particle filter, Water Resour. Res., 41, W05012,
https://doi.org/10.1029/2004wr003604, 2005.

Moradkhani, H., DeChant, C. M., and Sorooshian, S.: Evolution of ensemble
data assimilation for uncertainty quantification using the particle
filter-Markov chain Monte Carlo method, Water Resour. Res., 48, W12520,
https://doi.org/10.1029/2012wr012144, 2012.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R.
D., and Veith, T. L.: Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, Trans. ASABE, 50,
885–900, 2007.

Najafi, M. R. and Moradkhani, H.: A hierarchical Bayesian approach for the
analysis of climate change impact on runoff extremes, Hydrol. Process., 28,
6292–6308, https://doi.org/10.1002/hyp.10113, 2014.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Oudin, L., Andreassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments,
Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007wr006240, 2008.

Pan, Z., Liu, P., Gao, S., Cheng, L., Chen, J., and Zhang, X.: Reducing the
uncertainty of time-varying hydrological model parameters using spatial
coherence within a hierarchical Bayesian framework, J. Hydrol., 577, 123927, https://doi.org/10.1016/j.jhydrol.2019.123927, 2019.

Pan, Z. K., Liu, P., Gao, S. D., Feng, M. Y., and Zhang, Y. Y.: Evaluation
of flood season segmentation using seasonal exceedance probability
measurement after outlier identification in the Three Gorges Reservoir,
Stoch. Environ. Res. Risk Assess., 32, 1573–1586, https://doi.org/10.1007/s00477-018-1522-4,
2018.

Pathiraja, S., Marshall, L., Sharma, A., and Moradkhani, H.: Detecting
non-stationary hydrologic model parameters in a paired catchment system
using data assimilation, Adv. Water Resour., 94, 103–119,
https://doi.org/10.1016/j.advwatres.2016.04.021, 2016.

Pathiraja, S., Moradkhani, H., Marshall, L., Sharma, A., and Geenens, G.:
Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation,
Water Resour. Res., 54, 1252–1280, https://doi.org/10.1002/2018wr022627, 2018.

Patil, S. D. and Stieglitz, M.: Comparing Spatial and temporal
transferability of hydrological model parameters, J. Hydrol., 525, 409–417,
https://doi.org/10.1016/j.jhydrol.2015.04.003, 2015.

Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious
model for streamflow simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/s0022-1694(03)00225-7, 2003.

Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., and Franks,
S. W.: Toward a reliable decomposition of predictive uncertainty in
hydrological modeling: Characterizing rainfall errors using conditional
simulation, Water Resour. Res., 47, W11516, https://doi.org/10.1029/2011wr010643, 2011.

Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J.: The
influence of multiyear drought on the annual rainfall-runoff relationship:
An Australian perspective, Water Resour. Res., 51, 2444–2463,
https://doi.org/10.1002/2014wr015348, 2015.

Seiller, G., Anctil, F., and Perrin, C.: Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions, Hydrol. Earth Syst. Sci., 16, 1171–1189, https://doi.org/10.5194/hess-16-1171-2012, 2012.

Singh, S. K., Bardossy, A., Gotzinger, J., and Sudheer, K. P.: Effect of
spatial resolution on regionalization of hydrological model parameters,
Hydrol. Process., 26, 3499–3509, https://doi.org/10.1002/hyp.8424, 2012.

Spiegelhalter, D. J., Best, N. G., Carlin, B. R., and van der Linde, A.:
Bayesian measures of model complexity and fit, J. R. Stat. Soc. B Met., 64, 583–616, https://doi.org/10.1111/1467-9868.00353, 2002.

Sun, X. and Lall, U.: Spatially coherent trends of annual maximum daily
precipitation in the United States, Geophys. Res. Lett., 42, 9781–9789,
https://doi.org/10.1002/2015gl066483, 2015.

Sun, X., Thyer, M., Renard, B., and Lang, M.: A general regional frequency
analysis framework for quantifying local-scale climate effects: A case study
of ENSO effects on Southeast Queensland rainfall, J. Hydrol., 512, 53–68,
https://doi.org/10.1016/j.jhydrol.2014.02.025, 2014.

Sun, X., Lall, U., Merz, B., and Dung, N. V.: Hierarchical Bayesian
clustering for nonstationary flood frequency analysis: Application to trends
of annual maximum flow in Germany, Water Resour. Res., 51, 6586–6601,
https://doi.org/10.1002/2015wr017117, 2015.

Tegegne, G. and Kim, Y. O.: Modelling ungauged catchments using the
catchment runoff response similarity, J. Hydrol., 564, 452–466,
https://doi.org/10.1016/j.jhydrol.2018.07.042, 2018.

Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J. M., Viney, N. R., and
Teng, J.: Climate non-stationarity – Validity of calibrated rainfall-runoff
models for use in climate change studies, J. Hydrol., 394, 447–457,
https://doi.org/10.1016/j.jhydrol.2010.09.018, 2010.

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled
Complex Evolution Metropolis algorithm for optimization and uncertainty
assessment of hydrologic model parameters, Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002wr001642, 2003.

Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman,
J. M., and Higdon, D.: Accelerating Markov Chain Monte Carlo Simulation by
Differential Evolution with Self-Adaptive Randomized Subspace Sampling, Int. J. Nonlin. Sci. Num., 10,
273–290, https://doi.org/10.1515/Ijnsns.2009.10.3.273, 2009.

Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A
strategy for diagnosing and interpreting hydrological model nonstationarity,
Water Resour. Res., 50, 5090–5113, https://doi.org/10.1002/2013wr014719, 2014.

Wright, D. P., Thyer, M., and Westra, S.: Influential point detection
diagnostics in the context of hydrological model calibration, J. Hydrol.,
527, 1161–1172, https://doi.org/10.1016/j.jhydrol.2015.05.047, 2015.

Xiong, M., Liu, P., Cheng, L., Deng, C., Gui, Z., Zhang, X., and Liu, Y.:
Identifying time-varying hydrological model parameters to improve simulation
efficiency by the ensemble Kalman filter: A joint assimilation of streamflow
and actual evapotranspiration, J. Hydrol., 568, 758–768,
https://doi.org/10.1016/j.jhydrol.2018.11.038, 2019.

Xu, Q., Chen, J., Peart, M. R., Ng, C. N., Hau, B. C. H., and Law, W. W. Y.:
Exploration of severities of rainfall and runoff extremes in ungauged
catchments: A case study of Lai Chi Wo in Hong Kong, China, Sci. Total
Environ., 634, 640–649, https://doi.org/10.1016/j.scitotenv.2018.04.024, 2018.

Yan, H. X. and Moradkhani, H.: A regional Bayesian hierarchical model for
flood frequency analysis, Stoch. Environ. Res. Risk Assess., 29, 1019–1036,
https://doi.org/10.1007/s00477-014-0975-3, 2015.

Zhang, X. J., Liu, P., Cheng, L., Liu, Z. J., and Zhao, Y.: A back-fitting
algorithm to improve real-time flood forecasting, J. Hydrol., 562, 140–150,
https://doi.org/10.1016/j.jhydrol.2018.04.051, 2018.

Zhang, Y. Q., Viney, N., Frost, A., and Oke, A.: Collation of Australian Modeller’s Streamflow Dataset for 780 Unregulated Australian Catchments, CSIRO Water for a Healthy Country Flagship Report 2013, 1–115, CSIRO, Canberra, https://doi.org/10.4225/08/58b5baad4fcc2, 2013.