Supplement of

Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach

Samuli Launiainen et al.

Correspondence to: Samuli Launiainen (samuli.launiainen@luke.fi)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
1 Supplementary figures and tables

Supplementary material is provided below to support interpretation of the manuscript.

The SpaFHy source code (Python 2.7/3.6), a brief user manual and a sample dataset to run the model for a single forest stand and for a single catchment are available under MIT license at www.github.com/lukeecomod/spafhy_v1. DOI of the release is https://doi.org/10.5281/zenodo.3339279.

The figures and tables are referred as Fig. or Table Sx in the main paper.

Figure 1. Parameter ranking based on mean of absolute values (μ^*) of the distribution of elementary effects for evapotranspiration (ET), transpiration (T_r), evaporation from canopy interception (E), and ground evaporation (E_f). The higher the μ^* the more influential the parameter is. Error bars are 95% confidence intervals based on re-sampling (N=1000).
Figure 2. Observed (black) and modelled (red) specific discharge Q for catchments in Table S2. The value of Willmot’s index of agreement (eq. 24) is given for the period shown. Note that y-axis varies among the subplots.
Table 1. Soil types and their hydraulic properties used in the simulations. The θ_s is porosity, θ_{fc} and θ_{wp} volumetric water contents at field capacity and wilting point, K_{sat} saturated hydraulic conductivity and β parameter describing power-law decay of hydraulic conductivity with decreasing saturation ratio.

<table>
<thead>
<tr>
<th>Type</th>
<th>θ_s (m3m$^{-3}$)</th>
<th>θ_{fc} (m3m$^{-3}$)</th>
<th>θ_{wp} (m3m$^{-3}$)</th>
<th>K_{sat} (m s$^{-1}$)</th>
<th>β (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse textured</td>
<td>0.41</td>
<td>0.21</td>
<td>0.10</td>
<td>1.0×10^{-4}</td>
<td>3.1</td>
</tr>
<tr>
<td>Medium textured</td>
<td>0.43</td>
<td>0.33</td>
<td>0.13</td>
<td>1.0×10^{-5}</td>
<td>4.7</td>
</tr>
<tr>
<td>Fine textured</td>
<td>0.50</td>
<td>0.34</td>
<td>0.25</td>
<td>1.0×10^{-6}</td>
<td>7.9</td>
</tr>
<tr>
<td>Peat</td>
<td>0.90</td>
<td>0.41</td>
<td>0.11</td>
<td>5.0×10^{-5}</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Coarse textured includes sand, sandy till and gravelly till soils. Medium textured cover soil types from fine finesand and silty tills to finesandy till. Fine textured represents clays and silt. Hydrological properties correspond to sand, and silty loam and clay in Bittelli et al. (2015), respectively.
Table 2. Characteristics of headwater-catchments used in model validation

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Name</th>
<th>Lat, Lon</th>
<th>Area (ha)</th>
<th>$\langle LAI \rangle$ (m²/m²)</th>
<th>σ_{LAI} (m²/m²)</th>
<th>f_d</th>
<th>Vol. (m³/ha⁻¹)</th>
<th>$\langle TWI \rangle$</th>
<th>β_{TWI}</th>
<th>Fine text (%)</th>
<th>Medium (%)</th>
<th>Coarse (%)</th>
<th>Peat (%)</th>
<th>m (m)</th>
<th>d_j (m)</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Lompolojänganoja</td>
<td>68.00N, 24.20E</td>
<td>513.4</td>
<td>2.3</td>
<td>1.07</td>
<td>0.26</td>
<td>63.86</td>
<td>8.31</td>
<td>0.18</td>
<td>0</td>
<td>0.71</td>
<td>0.04</td>
<td>0.25</td>
<td>0.025</td>
<td>0.69</td>
<td>2014, 2015</td>
</tr>
<tr>
<td>C2</td>
<td>Laihupuro</td>
<td>63.76N, 28.51E</td>
<td>166.48</td>
<td>4.4</td>
<td>1.92</td>
<td>0.21</td>
<td>157.42</td>
<td>8.04</td>
<td>0.2</td>
<td>0</td>
<td>0.35</td>
<td>0</td>
<td>0.65</td>
<td>0.006</td>
<td>0.74</td>
<td>2006-2008</td>
</tr>
<tr>
<td>C3</td>
<td>Piskkavaara</td>
<td>63.86N, 29.16E</td>
<td>71.58</td>
<td>4.3</td>
<td>1.64</td>
<td>0.19</td>
<td>167.58</td>
<td>7.02</td>
<td>0.23</td>
<td>0</td>
<td>0.79</td>
<td>0.01</td>
<td>0.2</td>
<td>0.026</td>
<td>0.72</td>
<td>2006-2015</td>
</tr>
<tr>
<td>C9</td>
<td>Keisipuro</td>
<td>63.16N, 30.69E</td>
<td>71.6</td>
<td>1.8</td>
<td>1.36</td>
<td>0.11</td>
<td>86.94</td>
<td>8.35</td>
<td>0.27</td>
<td>0</td>
<td>0.39</td>
<td>0</td>
<td>0.61</td>
<td>0.011</td>
<td>0.68</td>
<td>2006-2013</td>
</tr>
<tr>
<td>C11</td>
<td>Metsäpuuro</td>
<td>60.35N, 24.69E</td>
<td>128.5</td>
<td>4.6</td>
<td>1.61</td>
<td>0.27</td>
<td>182.18</td>
<td>6.46</td>
<td>0.28</td>
<td>0.12</td>
<td>0.83</td>
<td>0</td>
<td>0.05</td>
<td>0.012</td>
<td>0.74</td>
<td>2015</td>
</tr>
<tr>
<td>C13</td>
<td>Rudhöken</td>
<td>60.14N, 24.26E</td>
<td>433.1</td>
<td>3.5</td>
<td>2.22</td>
<td>0.3</td>
<td>139.75</td>
<td>6.91</td>
<td>0.26</td>
<td>0.22</td>
<td>0.7</td>
<td>0.02</td>
<td>0.06</td>
<td>0.007</td>
<td>0.68</td>
<td>2015</td>
</tr>
<tr>
<td>C14</td>
<td>Paunalanpuuro</td>
<td>61.66N, 24.34E</td>
<td>310.0</td>
<td>4.4</td>
<td>1.75</td>
<td>0.3</td>
<td>166.61</td>
<td>7.42</td>
<td>0.24</td>
<td>0.07</td>
<td>0.8</td>
<td>0</td>
<td>0.13</td>
<td>0.007</td>
<td>0.68</td>
<td>2007-2015</td>
</tr>
<tr>
<td>C16</td>
<td>Huhtisuoconoja</td>
<td>61.38N, 28.65E</td>
<td>505.4</td>
<td>3.3</td>
<td>1.39</td>
<td>0.24</td>
<td>152.25</td>
<td>8.24</td>
<td>0.27</td>
<td>0</td>
<td>0.25</td>
<td>0.26</td>
<td>0.49</td>
<td>0.007</td>
<td>0.68</td>
<td>2007-2015</td>
</tr>
<tr>
<td>C19</td>
<td>Keskilinnpuuro</td>
<td>62.67N, 29.03E</td>
<td>2005.7</td>
<td>3.7</td>
<td>2.04</td>
<td>0.32</td>
<td>140.18</td>
<td>8.09</td>
<td>0.26</td>
<td>0.03</td>
<td>0.61</td>
<td>0</td>
<td>0.38</td>
<td>0.006</td>
<td>0.70</td>
<td>2006-2015</td>
</tr>
<tr>
<td>C21</td>
<td>Metsäpuuro</td>
<td>64.66N, 28.62E</td>
<td>1047.0</td>
<td>3.1</td>
<td>1.54</td>
<td>0.29</td>
<td>96.45</td>
<td>7.54</td>
<td>0.22</td>
<td>0</td>
<td>0.66</td>
<td>0</td>
<td>0.34</td>
<td>0.01</td>
<td>0.63</td>
<td>2006-2010, 2012-2015</td>
</tr>
<tr>
<td>C22</td>
<td>Myllypuuro</td>
<td>66.14N, 26.15E</td>
<td>1715.8</td>
<td>1.9</td>
<td>1.5</td>
<td>0.25</td>
<td>50.87</td>
<td>8.67</td>
<td>0.22</td>
<td>0</td>
<td>0.45</td>
<td>0.01</td>
<td>0.54</td>
<td>0.007</td>
<td>0.76</td>
<td>2006-2015</td>
</tr>
<tr>
<td>C25</td>
<td>Kohisevanpuuro</td>
<td>62.85N, 27.28E</td>
<td>1070.0</td>
<td>3.6</td>
<td>2.18</td>
<td>0.33</td>
<td>135.71</td>
<td>7.66</td>
<td>0.25</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>0.3</td>
<td>0.01</td>
<td>0.69</td>
<td>2006-2015</td>
</tr>
<tr>
<td>C29</td>
<td>Paunalanpuuro</td>
<td>68.74N, 21.41E</td>
<td>1157.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.91</td>
<td>2.41</td>
<td>7.42</td>
<td>0.22</td>
<td>0</td>
<td>0.86</td>
<td>0.01</td>
<td>0.12</td>
<td>0.02</td>
<td>0.76</td>
<td>2006-2015</td>
</tr>
<tr>
<td>C27</td>
<td>Lamiojoja</td>
<td>68.40N, 27.39E</td>
<td>1370.6</td>
<td>0.7</td>
<td>0.64</td>
<td>0.37</td>
<td>24.22</td>
<td>7.65</td>
<td>0.21</td>
<td>0</td>
<td>0.87</td>
<td>0.06</td>
<td>0.06</td>
<td>0.014</td>
<td>0.76</td>
<td>2006-2015</td>
</tr>
<tr>
<td>C28</td>
<td>Koopinmuko</td>
<td>60.80N, 22.37E</td>
<td>179.1</td>
<td>3.3</td>
<td>1.38</td>
<td>0.18</td>
<td>144.37</td>
<td>7.28</td>
<td>0.26</td>
<td>0</td>
<td>0.71</td>
<td>0</td>
<td>0.29</td>
<td>0.006</td>
<td>0.62</td>
<td>2014-2015</td>
</tr>
<tr>
<td>C29</td>
<td>Surnui</td>
<td>62.45N, 27.03E</td>
<td>70.8</td>
<td>2.8</td>
<td>1.72</td>
<td>0.34</td>
<td>107.52</td>
<td>7.92</td>
<td>0.22</td>
<td>0</td>
<td>0.59</td>
<td>0.04</td>
<td>0.37</td>
<td>0.009</td>
<td>0.62</td>
<td>2015</td>
</tr>
<tr>
<td>C31</td>
<td>Ojakorpi</td>
<td>60.63N, 22.62E</td>
<td>31.1</td>
<td>3.5</td>
<td>1.57</td>
<td>0.27</td>
<td>140.48</td>
<td>7.18</td>
<td>0.25</td>
<td>0</td>
<td>0.95</td>
<td>0</td>
<td>0.05</td>
<td>0.006</td>
<td>0.65</td>
<td>2012-2015</td>
</tr>
<tr>
<td>C32</td>
<td>Rantitärkä</td>
<td>60.61N, 22.60E</td>
<td>36.4</td>
<td>3.4</td>
<td>1.71</td>
<td>0.18</td>
<td>143.76</td>
<td>7.44</td>
<td>0.23</td>
<td>0.03</td>
<td>0.88</td>
<td>0</td>
<td>0.08</td>
<td>0.008</td>
<td>0.61</td>
<td>2013-2015</td>
</tr>
<tr>
<td>C33</td>
<td>Kiivipuro</td>
<td>63.87N, 26.65E</td>
<td>50.5</td>
<td>4.0</td>
<td>1.29</td>
<td>0.27</td>
<td>132.6</td>
<td>7.96</td>
<td>0.2</td>
<td>0</td>
<td>0.54</td>
<td>0</td>
<td>0.46</td>
<td>0.009</td>
<td>0.66</td>
<td>2006-2009, 2012-2014, 2015</td>
</tr>
</tbody>
</table>

C is the catchment number (Fig. S1); $\langle LAI \rangle$ and σ_{LAI} are mean and standard deviation of 1-sided leaf-area index; f_d the mean contribution of deciduous trees to LAI; Vol. the mean tree volume; $\langle TWI \rangle$ and β_{TWI} characterize the mean and standard deviation of log-normal distribution fitted to the discrete topographic wetness index (TWI) distribution. Fine, medium, coarse and peat: proportion (%) of grid cells belonging to soil type classes in Table 2 of the main document; m - Topmodel parameter effective soil depth; d_j Wilmot’s index of agreement (eq. 24).
2 Aerodynamic and surface conductances

The attenuation of mean wind speed U within the canopy is assumed exponential

$$U(z) = U(h_c) \cdot \exp^{\alpha(z/h_c - 1)},$$ \hfill (1)

where α (-) is attenuation coefficient, h_c (m) canopy height and z height above the ground. Neglecting effects of diabatic stability, the wind speed at canopy top $U(h_c)$ can be estimated from wind speed U_m at reference height z_m (typically 2 or 10 m) using logarithmic wind profile yielding

$$U(h_c) = U_m \frac{\ln((z_m - d)/z_{om})}{\ln((h_c - d)/z_{om})},$$ \hfill (2)

where $d \sim 0.66 h_c$ is displacement height and $z_{om} \sim 0.123 h_c$ the roughness height for momentum.

The resistance for turbulent transport in the canopy air space r_a (Magnani et al., 1998)

$$r_a = \frac{1}{k_v^2 U_o} \ln((z_m - d)/z_{om}) \ln((z_m - d)/z_{ov}),$$ \hfill (3)

where $k_v \sim 0.41$ is the von Karman constant and $z_{ov} \sim 0.1 z_{om}$ the roughness height for water vapor.

Representation for canopy-level quasi-laminar boundary-layer resistance r_b, assuming uniform leaf-area distribution and exponential wind profile within canopy, has been derived by Choudhury and Monteith (1988)

$$r_b = \frac{1}{LAI \beta} \sqrt{\frac{w}{U(h_c)}} \frac{\alpha}{[1 - \exp^{-0.5\alpha}]},$$ \hfill (4)

where w is characteristic leaf width (here 0.01 m) and proportionality coefficient $\beta \sim 285$ s m$^{-1}$ (Campbell and Norman, 1998). The canopy aerodynamic conductance is computed assuming r_a and r_b act on series

$$G_{a,c} = \frac{1}{r_a + r_b}.$$ \hfill (5)

The surface conductance for sublimation of intercepted snow, G_i, follows Essery et al. (2003) and Best et al. (2011)

$$G_i = \frac{3C_e D_w Sh W}{2 \rho_i r^2} \sim \frac{C_e Sh W}{7.68},$$ \hfill (6)

where $Sh = 1.79 + 3 U^{0.5}$ is the Sherwood number, ρ_i density of ice, D_w molecular diffusivity of water vapor in the air, and r the characteristic radius of snow grains (500μm). The exposure coefficient C_e

$$C_e = k_1 \left(\frac{W}{W_{max}} \right)^{-0.4}$$ \hfill (7)

depends on amount of intercepted snow water W relative to the maximum storage and $k_1 = 0.01$ from Pomeroy et al. (1998).

The forest floor / peatland surface resistance is computed as

$$r_{a,f} = \frac{1}{k_v^2 U_g} \ln((z_g/z_{os}) \ln((z_g/z_{osv})),$$ \hfill (8)

where U_g is the wind speed at height z_g above ground (from eq. 1), and z_{os} and z_{osv} surface roughness heights for momentum and water vapor, respectively. Finally, the forest floor conductance $G_{a,f} = 1/r_{a,f}$.
3 Deriving parameter ranges for eq. 4: test against a common gas-exchange model

In the main paper, eq. 4 provides approach to estimate the canopy conductance \(G_c \) based on well-established stomatal conductance model, simplified canopy radiation transfer scheme and ecosystem LAI. The stomatal model used is based on Medlyn et al. (2012), who showed that leaf-scale stomatal conductance \((g_s, \text{ mol m}^{-2} \text{s}^{-1}) \) is related to leaf net photosynthetic rate \((A, \mu\text{mol m}^{-2} \text{s}^{-1}) \) as

\[
g_s \simeq g_o + 1.6 \left(1 + \frac{g_1}{\sqrt{D}} \right) \frac{A}{C_a}, \tag{9}
\]

where \(C_a \) is the atmospheric CO\(_2\) mixing ratio (ppm), \(D \) (kPa) is vapor pressure deficit, \(g_o \) residual (or cuticular) conductance and \(g_1 \) a species-specific parameter that depends on plant water use strategy. Noting that \(g_o \ll g_s \) (Medlyn et al., 2012) and representing photosynthetic light response by saturating hyperbola (Saugier and Katerji, 1991), eq. (9) can be approximated as

\[
g_s = 1.6 \left(1 + \frac{g_1}{\sqrt{D}} \right) \frac{A_{\text{max}}}{C_a} \frac{PAR}{PAR + b} C_{\text{air}}, \tag{10}
\]

where \(A_{\text{max}} \) (\(\mu\text{mol m}^{-2} \text{s}^{-1} \)) is the light-saturated photosynthesis rate, \(b \) (W m\(^{-2}\)) the half-saturation value of photosynthetically active radiation \((PAR) \), and molar density of air \(C_{\text{air}} \) (mol m\(^{-3}\)) converts units of \(g_s \) to m s\(^{-1}\). The eq. 10 suggests that \(g_s \) in a reference conditions (fixed \(D \) and CO\(_2\)) is constrained by plant water use and photosynthetic traits. There are readily measurable by leaf gas-exchange techniques, and widely available in literature and in plant trait databases such as TRY (Kattge et al., 2011).

For sensitivity analysis (Sect. 2.5), we determined plausible parameter ranges (Table 3) using literature, shoot gas-exchange measurements at FIHy and predictions of common leaf photosynthesis model (Farquhar et al., 1980) model coupled with eq. 9. For Scots pine, \(g_1 \) was shown to vary between 1.9 and 2.3 for different shoots measured at FIHy (Launiainen et al., 2015), while \(g_1 \) was 3.5 - 4.0 for deciduous Aspen and Birch leaves at the same site (unpublished data). These fall well within the values from global synthesis, giving mean \(g_1 \) 2.35 for evergreen gymnosperm and 4.67 for deciduous angiosperm tree species (boreal biome mean \(g_1 \) 2.2) (Lin et al., 2015). The \(A_{\text{max}} \) and \(b \) can be estimated from shoot gas-exchange measurements, or as here by using common leaf gas-exchange model (Farquhar et al., 1980) with parameter values characteristic for boreal plants. Fig. 3 shows photosynthetic light response curves for combinations of parameter values (at reference temperature 25 °C): maximum carboxylation velocity \(V_{c,max,25} \) 40 - 70 \(\mu\text{mol m}^{-2} \text{s}^{-1} \); maximum electron transport rate \(J_{max} = 1.9 \times V_{c,max} \) and dark respiration rate \(r_d = 0.02 \times V_{c,max} \). For the specific version of Farquhar -model used, and its other ’generic’ parameters see Launiainen et al. (2015).

The plausible values for \(A_{\text{max}} \) and \(b \) can be now approximated by fitting empirical light response \(A_{\text{max}} Q_p/(Q_p + b) \) to leaf gas-exchange model predictions. Further, as \(V_{c,max} \) and \(A_{\text{max}} \) are strongly related to leaf nitrogen content (Kattge et al., 2009), using site fertility class as a proxy for \(A_{\text{max}} \) could later provide a way to infuse site type effect into spatial predictions of transpiration.

The upscaling from \(g_s \) to \(G_c \) by the proposed scheme (eq. 4 in the main paper), and the leaf gas-exchange model predictions are compared in 4. The \(G_c \) in x-axis corresponds to case \(V_{c,max} = 55 \mu\text{mol m}^{-2} \text{s}^{-1} \) and \(g_1 = 2.5 \) in Fig. 3 and is computed as follows: First, a canopy with \(LAI = 4.0 \text{m}^2 \text{m}^{-2} \) is divided into 100 layers and absorbed \(Q_p \) (per unit leaf area) at each layer computed assuming attenuation of \(Q_p \) exponential with attenuation coefficient \(k_p = 0.6 \) (temperature and \(D \) taken constant with height). Then, \(g_s \) for each layer is computed by the leaf gas-exchange model using local \(Q_p \), and integrated with respect to \(LAI \) to yield \(G_c \). The parameters for eq. 4 are inferred from the leaf-scale light-response (Fig. 3) as \(A_{\text{max}} = 11.6 \mu\text{mol m}^{-2} \) and \(b = 60 \text{ Wm}^{-2} \) and \(\text{CO}_2 \). The forcing data \((Q_p, D, \text{CO}_2) \) were taken from 1/2 h average values in July-August 2005 at FIHy site. The results show reasonably good correspondence at the sub-daily timescale. The applicability of eq. 4 at daily timescale is then indirectly explored in the main manuscript by comparison against daily dry-canopy \(ET \) measurements from ten boreal FluxNet sites.
Figure 3. Photosynthetic light response and stomatal conductance predicted by a common leaf gas-exchange model for different parameter combinations. The legend gives values of V_{cmax} and g_1 for each curve. See text for details.
Figure 4. Canopy conductance G_c predicted by a leaf gas-exchange model combined with exponential attenuation of radiation (x-axis) and by the proposed simplification (eq. 4 in the main manuscript, y-axis). The canopy $LAI = 4.0 \text{ m}^2\text{m}^{-2}$ and the parameters of gas-exchange model correspond to case $V_{cmax} = 55 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ and $g_1 = 2.5$ in Fig. 3, while those in eq. 4 uses A_{max} and b inferred by fitting the light response $A_{max} Q_p/(Q_p + b)$ to that particular case in Fig. 3. The points show 1/2 h predictions and the red line is linear-least squares regression.

$y = 0.97 \times, r^2 = 0.96$
4 Snow model

Snowpack at the forest floor is described through snow water equivalent (\(SWE\)), which consists of solid (\(SWE_s\)) and liquid phases (\(SWE_l\)) (mm). Their respective mass balances are computed as

\[
\frac{\Delta SWE_s}{\Delta t} = f_s (T_f + U_s) + F - M
\]

\[
\frac{\Delta SWE_l}{\Delta t} = (1 - f_s) (T_f + U_s) - F + M,
\]

where \(f_s\) is temperature-dependent fraction of precipitation falling as snow, \(T_f\) and \(U_s\) throughfall and snow unloading rates, respectively. The snowmelt \(M\) and liquid water re-freezing \(F\) (mm d\(^{-1}\)) are estimated based on degree-day approach

\[
M = \min (SWE_i, K_m T_a), \quad T_a < 0.0^\circ C
\]

\[
F = \min (SWE_l, K_f T_a), \quad T_a > 0.0^\circ C,
\]

where \(K_m\) (mm d\(^{-1}\) C\(^{-1}\)) is melting coefficient and freezing coefficient \(K_f \sim 0.3\) mm d\(^{-1}\) C\(^{-1}\) is assumed independent of stand characteristics. The snowpack can retain only a certain fraction of liquid water, and thus \(SWE_l\) is constrained to \(\leq r SWE_i\), where \(r \sim 0.05\). The excess liquid water from the snowpack is routed to soil sub-model (Bucket) as potential infiltration; in snowfree conditions potential infiltration equals \(T_f\).
References

