Aquanty Inc.: HydroGeoSphere User Manual, Tech. rep., Aquanty Inc., Waterloo, ON, Canada, 2015. a

Beven, K. and Binley, A.: The future of distributed models: Model calibration
and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992. a

Cirpka, O. A. and Kitanidis, P. K.: Sensitivities of temporal moments
calculated by the adjoint-state method and joint inversing of head and tracer
data, Adv. Water Resour., 24, 89–103, 2000. a

Constantine, P. G. and Diaz, P.: Global sensitivity metrics from active
subspaces, Reliab. Eng. Syst. Saf., 162, 1–13, https://doi.org/10.1016/j.ress.2017.01.013, 2017. a, b, c

Constantine, P. G. and Doostan, A.: Time-dependent global sensitivity analysis with active subspaces for a lithium ion battery model, Stat. Anal. Data Min., 10, 243–262, https://doi.org/10.1002/sam.11347, 2017. a

Constantine, P. G., Dow, E., and Wang, Q.: Active Subspace Methods in Theory
and Practice: Applications to Kriging Surfaces, SIAM J. Sci. Comput., 36,
A1500–A1524, 2014. a, b

Constantine, P. G., Emory, M., Larsson, J., and Iaccarino, G.: Exploiting
active subspaces to quantify uncertainty in the numerical simulation of the
HyShot II scramjet, J. Comput. Phys., 302, 1–20,
https://doi.org/10.1016/j.jcp.2015.09.001, 2015a. a

Constantine, P. G., Zaharators, B., and Campanelli, M.: Discovering an Active
Subspace in a Single-Diode Solar Cell Model, Stat. Anal. Data Min. ASA Data
Sci. J., 8, 264–273, https://doi.org/10.1002/sam.11281, 2015b. a

Constantine, P. G., Kent, C., and Bui-Thanh, T.: Accelerating Markov Chain
Monte Carlo with Active Subspaces, SIAM J. Sci. Comput., 38, A2779–A2805,
2016. a

D'Affonseca, F. M., Rügner, H., Finkel, M., Osenbrück, K., Duffy, C., and Cirpka, O. A.: Umweltgerechte Gesteinsgewinnung in Wasserschutzgebieten, Tech. rep., Universität Tübingen, Tübingen, 2018. a, b

Gilbert, J. M., Jefferson, J. L., Constantine, P. G., and Maxwell, R. M.:
Global spatial sensitivity of runoff to subsurface permeability using the
active subspace method, Adv. Water Resour., 92, 30–42,
https://doi.org/10.1016/j.advwatres.2016.03.020, 2016. a

Glaws, A., Constantine, P. G., Shadid, J. N., and Wildey, T. M.: Dimension
reduction in magnetohydrodynamics power generation models: Dimensional
analysis and active subspaces, Stat. Anal. Data Min., 10, 312–325,
https://doi.org/10.1002/sam.11355, 2017. a

Grey, Z. J. and Constantine, P. G.: Active subspaces of airfoil shape
parameterizations, AIAA J., 56, 2003–2017, https://doi.org/10.2514/1.J056054, 2018. a, b

Hastings, W.: Monte Carlo sampling methods using Markov chains and their
applications, Biometrika, 57, 97–109, 1970. a

Hu, X., Parks, G. T., Chen, X., and Seshadri, P.: Discovering a one-dimensional active subspace to quantify multidisciplinary uncertainty in
satellite system design, Adv. Space Res., 57, 1268–1279,
https://doi.org/10.1016/j.asr.2015.11.001, 2016. a

Hu, X., Chen, X., Zhao, Y., Tuo, Z., and Yao, W.: Active subspace approach to
reliability and safety assessments of small satellite separation, Acta
Astronaut., 131, 159–165, https://doi.org/10.1016/j.actaastro.2016.10.042, 2017. a

Jefferson, J. L., Gilbert, J. M., Constantine, P. G., and Maxwell, R. M.:
Active subspaces for sensitivity analysis and dimension reduction of an
integrated hydrologic model, Comput. Geosci., 83, 127–138,
https://doi.org/10.1016/j.cageo.2015.07.001, 2015. a

Jefferson, J. L., Maxwell, R. M., and Constantine, P. G.: Exploring the
Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land
Surface Model, J. Hydrometeorol., 18, 897–915, https://doi.org/10.1175/jhm-d-16-0053.1, 2017. a

Kolbe, T., de Dreuzy, J.-R., Abbott, B. W., Aquilina, L., Babey, T., Green,
C. T., Fleckenstein, J. H., Labasque, T., Laverman, A. M., Marcais, J.,
Peiffer, S., Thomas, Z., and Pinay, G.: Stratification of reactivity
determines nitrate removal in groundwater, P. Natl. Acad. Sci. USA, 116,
2494–2499, https://doi.org/10.1073/pnas.1816892116, 2019. a

Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, E., Mouche, E., Mügler, C., Park, Y. J., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res., 53, 867–890, https://doi.org/10.1002/2016WR019191, 2017. a

Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J.,
Vereecken, H., and Simmer, C.: Proof of concept of regional scale hydrologic
simulations at hydrologic resolution utilizing massively parallel computer
resources, Water Resour. Res., 46, W04201, https://doi.org/10.1029/2009WR008730, 2010. a

Li, J., Cai, J., and Qu, K.: Surrogate-based aerodynamic shape optimization
with the active subspace method, Struct. Multidiscip. Optim., 59, 403–419,
https://doi.org/10.1007/s00158-018-2073-5, 2019. a, b

Loschko, M., Wöhling, T., Rudolph, D. L., and Cirpka, O. A.: Cumulative
relative reactivity: A concept for modeling aquifer-scale reactive transport, Water Resour. Res., 52, 8117–8137, https://doi.org/10.1002/2016WR019080, 2016. a

Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I. M.,
Ivanov, V., Kim, J., Kolditz, O., Kollet, S. J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M. S., Shen, C., Sudicky, E. A.,
and Sulis, M.: Surface-subsurface model intercomparison: A first set of
benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res., 50, 1531–1549, https://doi.org/10.1002/2013WR013725, 2015. a

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines, J.
Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. a

Mishra, S., Deeds, N., and Ruskauff, G.: Global sensitivity analysis
techniques for probabilistic ground water modeling, Ground Water, 47,
730–747, https://doi.org/10.1111/j.1745-6584.2009.00604.x, 2009. a

Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522, 1976. a

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Model. Softw., 79, 214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016. a

Ratto, M., Castelletti, A., and Pagano, A.: Emulation techniques for the
reduction and sensitivity analysis of complex environmental models, Environ.
Model. Softw., 34, 1–4, https://doi.org/10.1016/j.envsoft.2011.11.003, 2012. a

Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in
water resources, Water Resour. Res., 48, W07401, https://doi.org/10.1029/2011WR011527, 2012. a, b, c

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity
analysis in practice: a guide to assessing scientific models, John Wiley & Sons, Ltd, Chichester, 2004. a, b

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis. The Primer,
John Wiley & Sons, Ltd, Chichester, https://doi.org/10.1002/9780470725184, 2008.
a

Sanz-Prat, A., Lu, C., Amos, R. T., Finkel, M., Blowes, D. W., and Cirpka, O. A.: Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity, J. Contam. Hydrol.,
192, 35–49, https://doi.org/10.1016/j.jconhyd.2016.06.002, 2016. a

Selle, B., Rink, K., and Kolditz, O.: Recharge and discharge controls on
groundwater travel times and flow paths to production wells for the Ammer
catchment in southwestern Germany, Environ. Earth Sci., 69, 443–452,
https://doi.org/10.1007/s12665-013-2333-z, 2013. a

Shuttleworth, W. J., Zeng, X., Gupta, H. V., Rosolem, R., and
de Gonçalves, L. G. G.: Towards a comprehensive approach to parameter
estimation in land surface parameterization schemes, Hydrol. Process., 27,
2075–2097, https://doi.org/10.1002/hyp.9362, 2012. a

Sobol, I. M.: Sensitivity analysis for nonlinear mathematical models, Math.
Model. Comput. Exp., 1, 407–414, https://doi.org/10.18287/0134-2452-2015-39-4-459-461, 1993. a

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global
sensitivity analysis in hydrological modeling: Review of concepts, methods,
theoretical framework, and applications, J. Hydrol., 523, 739–757,
https://doi.org/10.1016/j.jhydrol.2015.02.013, 2015. a, b, c

Spear, R. and Hornberger, G.: Eutrophication in Peel Inlet – II. Identification of Critical Uncertainties via Generalized Sensitivity Analysis, Water Res., 14, 43–49, 1980. a

Van Genuchten, M.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 8, 892–898, 1980. a

Vrugt, J. A., Stauffer, P. H., Wöhling, T., Robinson, B. A., and
Vesselinov, V. V.: Inverse Modeling of Subsurface Flow and Transport
Properties: A Review with New Developments, Vadose Zone J., 7, 843–864,
https://doi.org/10.2136/vzj2007.0078, 2008. a

Yeh, W. W.-G.: Review: Optimization methods for groundwater modeling and
management, Hydrogeol. J., 23, 1051–1065, https://doi.org/10.1007/s10040-015-1260-3,
2015. a