Abrate, T., Hubert, P., and Sighomnou, D.: A study on the hydrological series
of the Niger River, Hydrol. Sci. J., 58, 271–279,
https://doi.org/10.1080/02626667.2012.752575, 2013. a
Aich, V., Liersch, S., Vetter, T., Huang, S., Tecklenburg, J., Hoffmann, P., Koch, H., Fournet, S., Krysanova, V., Müller, E. N., and Hattermann, F. F.: Comparing impacts of climate change on streamflow in four large African river basins, Hydrol. Earth Syst. Sci., 18, 1305–1321, https://doi.org/10.5194/hess-18-1305-2014, 2014. a
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. H., Knapp, K. R.,
Cecil, L. D., Belson, B. R., and Prat, O. P.: PERSIANN-CDR: daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015. a
Awange, J. L., Ferreira, V. G., Forootan, E., Khandu, S. A., Agutu, N. O., and
He, X. F.: Uncertainties in remotely sensed precipitation data over Africa,
Int. J. Climatol., 36, 303–323, https://doi.org/10.1002/joc.4346, 2015. a
Bergström, S.: The HBV model, in: Computer Models of
Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA,
443–476, 1995. a
Biancamaria, S., Frappart, F., Leleu, A.-S., Marieu, V., Blumstein, D.,
Desjonquères, J.-D., Boy, F., Sottolichio, A., and Valle-Levinson, A.:
Satellite radar altimetry water elevations performance over a 200 m wide
river: Evaluation over the Garonne River, Adv. Space Res., 59, 128–146, 2017. a
Bodian, A., Dezetter, A., Diop, L., Deme, A., Djaman, K., and Diop, A.: Future
Climate Change Impacts on Streamflows of Two Main West Africa River Basins:
Senegal and Gambia, Hydrology, 5, 21, https://doi.org/10.3390/hydrology5010021, 2018. a
Boergens, E., Dettmering, D., Schwatke, C., and Seitz, F.: Treating the Hooking
Effect in Satellite Altimetry Data: A Case Study along the Mekong River and
Its Tributaries, Remote Sens., 8, 91, https://doi.org/10.3390/rs8020091, 2016. a
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P.,
Seyler, F., Onguéné, R., Etamé, J., Paiz, M.-C., and Braun, J.-J.:
Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged
River Basin: The Case of the Ogooué, Remote Sens., 10, 350,
https://doi.org/10.3390/rs10020350, 2018. a
Casse, C., Gosset, M., Vischel, T., Quantin, G., and Tanimoun, B. A.: Model-based study of the role of rainfall and land use–land cover in the changes in the occurrence and intensity of Niger red floods in Niamey between 1953 and 2012, Hydrol. Earth Syst. Sci., 20, 2841–2859, https://doi.org/10.5194/hess-20-2841-2016, 2016. a
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., and
Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of
global daily precipitation, J. Geophys. Res., 113, D04110,
https://doi.org/10.1029/2007JD009132, 2008. a
Chin, S. A., Jasinski, M. F., Birkett, C. M., and Costa, M. H.: Feasibility of
Estimating Amazon River Stage and Discharge Using Topex/Poseidon Altimetric
Data, American Geophysical Union, Spring Meeting 2001, 29 May–2 June 2001, Boston, MA, abstract id. H61A-06,
2001.
a, b
Collischonn, W., Allasia, D., Da Silva, B., and Tucci, C.: The MGB-IPH model
for large-scale rainfall-runoff modelling, Hydrol. Sci. J., 52, 878–895,
https://doi.org/10.1623/hysj.52.5.878, 2007. a
Coulthard, T. J. and Macklin, M. G.: How sensitive are river systems to climate
and land‐use changes? A model‐based evaluation, J. Quaternary Sci., 16,
347–351, https://doi.org/10.1002/jqs.604, 2001. a
Crétaux, J.-F., Jelinskia, W., Calmant, S., Kouraev, A., Vuglinski, V.,
Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Rio, R. A. D., Cazenave, A., and
Maisongrande, P.: SOLS: A lake database to monitor in the Near Real Time
water level and storage variations from remote sensing data, Adv. Space Res.,
47, 1497–1507, https://doi.org/10.1016/j.asr.2011.01.004, 2011. a
Dinardo, S., Fenoglio, L., Buchhaupt, C., Becker, M., Scharroo, R., Fernandes,
M., and Benveniste, J.: Coastal SAR and PLRM altimetry in German Bight and
West Baltic Sea, Adv. Space Res., 62, 1358–1370,
https://doi.org/10.1016/j.asr.2017.12.018, 2017. a
Elmi, O., Tourian, M., and Sneeuw, N.: River discharge estimation using channel
width from satellite imagery, Int. Geosci. Remote Se. 2015, 727–730,
https://doi.org/10.1109/IGARSS.2015.7325867, 2015. a
Fischler, M. and Bolles, R.: Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography,
Commun. ACM, 24, 381–395, https://doi.org/10.1145/358669.358692, 1981. a
Fleischmann, A., Siqueira, V., Paris, A., Collischonn, W., Paiva, R., Pontes,
P., Crétaux, J.-F., Bergé-Nguyen, M., Biancamaria, S., Gosset, M., Calmant,
S., and Tanimoun, B.: Modelling hydrologic and hydrodynamic processes in
basins with large semi-arid wetlands, J. Hydrol., 561, 943–959,
https://doi.org/10.1016/j.jhydrol.2018.04.041, 2018. a, b, c
Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A.:
Preliminary results of ENVISAT RA-2-derived water levels validation over the
Amazon basin, Remote Sens. Environ., 100, 252–264,
https://doi.org/10.1016/j.rse.2005.10.027, 2006. a
Getirana, A. C. V. and Peters-Lidard, C.: Estimating water discharge from large radar altimetry datasets, Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, 2013. a
Harris, I. C. and Jones, P. D.: Updated high‐resolution grids of monthly
climatic observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34,
623–642, https://doi.org/10/gcmcz3, 2013. a
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,
G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM multisatellite
precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007. a
Ibrahim, M., Wisser, D., Ali, A., Diekkrüger, B., Seidou, O., Mariko, A., and
Afouda, A.: Water balance analysis over the Niger Inland Delta – Mali:
Spatio-temporal dynamics of the flooded area and water losses, Hydrology, 4,
40, https://doi.org/10.3390/hydrology4030040, 2017. a
Koblinsky, C., Clarke, R., Brenner, A., and Frey, H.: Measurement of river
level variations with satellite altimetry, Water Resour. Res., 29, 1839–1848,
https://doi.org/10.1029/93WR00542, 1993. a
Kodja, D. J., Mahé, G., Amoussou, E., Boko, M., and Paturel, J.-E.: Assessment
of the Performance of Rainfall-Runoff Model GR4J to Simulate Streamflow in
Ouémé Watershed at Bonou's outlet (West Africa), Preprints 2018,
https://doi.org/10.20944/preprints201803.0090.v1, 2018. a
Kouraev, A., Zakharova, E. A., Samain, O., Mognards, N. M., and Cazenave, A.:
Ob' river discharge from TOPEX/Poseidon satellite altimetry (1992–2002),
Remote Sens. Environ., 93, 238–245, 2004. a
Lambie, J. C.: Measurement of flow: Velocity-area methods, Hydrometry: Principles and Practices, 1st edition, edited by: Herschy, R. W., 1–52, Chichester, Wiley Interscience, John Wiley & Sons, 1978. a
Legesse, D., Vallet-Coulomb, C., and Gassea, F.: Hydrological response of a
catchment to climate and land use changes in Tropical Africa: case study
South Central Ethiopia, J. Hydrol., 275, 67–85,
https://doi.org/10.1016/S0022-1694(03)00019-2, 2003. a
Leon, J. G., Calmant, S., Seyler, F., Bonnet, M. P., Cauhope, M., Frappart, F.,
and Filizola, N.: Rating curves and estimation of average water depth at the
Upper Negro River based on satellite altimeter data and modelled discharges,
J. Hydrol., 328, 481–496, 2006. a
Moore, P., Birkinshaw, S. J., Ambrózio, A., Restano, M., and Benveniste, J.:
CryoSat-2 Full Bit Rate Level 1A processing and validation for inland water
applications, Adv. Space Res., 62, 1497–1515,
https://doi.org/10.1016/j.asr.2017.12.015, 2018. a
Munier, S., Polebistki, A., Brown, C., Belaud, G., and Lettenmaier, D.: SWOT
data assimilation for operational reservoir management on the upper Niger
River Basin, Water Resour. Res., 51, 554–575, 2015. a
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970. a
Olomoda, I. A.: Challenges of continued river Niger low flow into Nigeria,
Special Publication of the Nigerian Association of Hydrological Sciences,
http://www.unaab.edu.ng (last access: 28 September 2019), 2012. a
Oyerinde, G. T., Fademi, I. O., and Denton, O. A.: Modeling runoff with
satellite-based rainfall estimates in the Niger basin, Cogent Food &
Agriculture, 3, 1363340, https://doi.org/10.1080/23311932.2017.1363340, 2017. a
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. V., Rahman,
A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar
altimetry: An update to the long-term satellite-derived estimates of
continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res.,
117, C11021, https://doi.org/10.1029/2012JC008158, 2012. a, b
Paris, A., de Paiva, R. D., da Silva, J. S., Moreira, D. M., Calmant, S.,
Garambois, P.-A., Collischonn, W., Bonnet, M.-P., and Seyler, F.:
Stage-discharge rating curves based on satellite altimetry and modeled
discharge in the Amazon basin, Water Resour. Res., 52, 3787–3814,
https://doi.org/10.1002/2014WR016618, 2016. a, b
Pedinotti, V., Boone, A., Decharme, B., Crétaux, J. F., Mognard, N., Panthou, G., Papa, F., and Tanimoun, B. A.: Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets, Hydrol. Earth Syst. Sci., 16, 1745–1773, https://doi.org/10.5194/hess-16-1745-2012, 2012. a
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a Parsimonious
Model for Streamflow Simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a
Poméon, T., Jackisch, D., and Diekkrüger, B.: Evaluating the performance of
remotely sensed and reanalysed precipitation data over West Africa using HBV
light, J. Hydrol., 547, 222–235, https://doi.org/10.1016/j.jhydrol.2017.01.055, 2017. a, b
Poméon, T., Diekkrüger, B., Springer, A., Kusche, J., and Eicker, A.:
Multi-Objective Validation of SWAT for Sparsely-Gauged West African River
Basins – A Remote Sensing Approach, Water, 10, 451, https://doi.org/10.3390/w10040451,
2018. a
Ray, C., Martin-Puig, C., Clarizia, M., Ruffini, G., Dinardo, S., Gommenginger,
C., and Benveniste, J.: SAR Altimeter Backscattered Waveform Model, IEEE
T. Geosci. Remote, 53, 911–919, https://doi.org/10.1109/TGRS.2014.2330423,
2015. a
Roscher, R., Uebbing, B., and Kusche, J.: STAR: Spatio-Temporal Altimeter
Waveform Retracking Using Sparse Representation and Conditional Random
Fields, Remote Sens. Environ., 201, 148–164, https://doi.org/10.1016/j.rse.2017.07.024,
2017. a
Santos da Silva, J., Calmant, S., Seyler, F., Rotunno Filho, O., Cochonneau,
G., and Mansur, W.: Water levels in the Amazon basin derived from the ERS 2
and ENVISAT radar altimetry missions, Remote Sens. Environ., 114, 2160–2181,
https://doi.org/10.1016/j.rse.2010.04.020, 2010. a
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015. a, b, c
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012. a, b, c
Seyler, F., Calmant, S., da Silva, J., Moreira, D. M., Mercier, F., and Shum, C.:
From TOPEX/Poseidon to Jason-2/OSTM in the Amazon basin, Adv. Space Res., 51,
1542–1550, https://doi.org/10.1016/j.asr.2012.11.002, 2013.
a
Springer, A., Eicker, A., Bettge, A., Kusche, J., and Hense, A.: Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE, Water, 9, 289, https://doi.org/10.3390/w9040289, 2017. a, b
Sridevi, T., Sharma, R., Mehra, P., and Prasad, K.: Estimating discharge from
the Godavari River using ENVISAT, Jason-2, and SARAL/AltiKa radar altimeters,
Remote Sens. Lett., 7, 348–357, https://doi.org/10.1080/2150704X.2015.1130876, 2016. a
Tarpanelli, A., Barbetta, S., Brocca, L., and Moramarco, T.: River discharge
estimation by using altimetry data and simplified flood routing modeling,
Remote Sens., 5, 4145–4162, https://doi.org/10.3390/rs5094145, 2013. a
Tarpanelli, A., Amarnath, G., Brocca, L., Massari, C., and Moramarco, T.:
Discharge estimation and forecasting by MODIS and altimetry data in
Niger-Benue River, Remote Sens. Environ., 195, 96–106,
https://doi.org/10.1016/j.rse.2017.04.015, 2017. a
Tourian, M., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., and Sneeuw, N.: Spatiotemporal densification of river water level time series by multimission satellite altimetry, Water Resour. Res., 52, 1140–1159,, 2016. a, b, c
Tourian, M., Schwatke, C., and Sneeuw, N.: River discharge estimation at daily
resolution from satellite altimetry over an entire river basin, J. Hydrol.,
546, 230–247, https://doi.org/10.1016/j.jhydrol.2017.01.009, 2017. a, b
Uebbing, B., Kusche, J., and Forootan, E.: Waveform retracking for improving
level estimations from TOPEX/Poseidon, Jason-1, and Jason-2 altimetry
observations over African lakes, T. Geosci. Remote, 53, 2211–2224, 2015. a
Xie, P., Yoo, S.-H., Joyce, R., and Yarosh, Y.: Bias-corrected CMORPH: A
13-year analysis of high resolution global precipitation,
http://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0 (last access: 28 September 2019), 2011. a