Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions
of multiple dependence, Insur. Math. Econ., 44, 182–198,
https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009.

Akaike, H.: A new look at the statistical model identification, IEEE T.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.

Ayalew, T. B., Krajewski, W. F., and Mantilla, R.: Exploring the effect of
reservoir storage on peak discharge frequency, J. Hydrol. Eng., 18,
1697–1708, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000721, 2013.

Ayalew, T. B., Krajewski, W. F., and Mantilla, R.: Inights into expected
changes in regulated flood frequencies due to the spatial configuration of
flood retention ponds, J. Hydrol. Eng., 20, 04015010,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001173, 2015.

Batalla, R. J., Gomez, C. M., and Kondolf, G. M.: Reservoir-induced
hydrological changes in the Ebro River basin (NE Spain), J. Hydrol., 290,
117–136, https://doi.org/10.1016/j.jhydrol.2003.12.002, 2004.

Benito, G. and Thorndycraft, V. R.: Palaeoflood hydrology and its role in
applied hydrological sciences, J. Hydrol., 313, 3–15,
https://doi.org/10.1016/j.jhydrol.2005.02.002, 2005.

Chib, S. and Greenberg, E.: Understanding the metropolis-hastings algorithm,
Am. Stat., 49, 327–335, https://doi.org/10.1080/00031305.1995.10476177, 1995.

Chivers, C.: MHadaptive: General Markov chain Monte Carlo for Bayesian
inference using adaptive Metropolis-Hastings sampling, available at:
https://CRAN.R-project.org/package=MHadaptive (last access: 9 August 2019), 2012.

Coles, S.: An Introduction to Statistical Modeling of Extreme Values,
Springer, London, https://doi.org/10.1007/978-1-4471-3675-0, 2001.

Cong, M., Chunxia, L., and Yiqiu, L.: Runoff change in the lower reaches of
Ankang Reservoir and the influence of Ankang Reservoir on its downstream,
Resources and Environment in the Yangtze Basin, 22, 1433–1440, 2013 (in
Chinese).

Du, T., Xiong, L., Xu, C.-Y., Gippel, C. J., Guo, S., and Liu, P.: Return
period and risk analysis of nonstationary low-flow series under climate
change, J. Hydrol., 527, 234–250, https://doi.org/10.1016/j.jhydrol.2015.04.041, 2015.

El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R., and Bobée, B.:
Generalized maximum likelihood estimators for the nonstationary generalized
extreme value model, Water Resour. Res., 43, 455–456,
https://doi.org/10.1029/2005WR004545, 2007.

Genest, C., Rémillard, B., and Beaudoin, D.: Goodness-of-fit tests for
copulas: A review and a power study, Insur. Math. Econ., 44, 199–213,
https://doi.org/10.1016/j.insmatheco.2007.10.005, 2009.

Gilroy, K. L. and Mccuen, R. H.: A nonstationary flood frequency analysis
method to adjust for future climate change and urbanization, J. Hydrol.,
414, 40–48, https://doi.org/10.1016/j.jhydrol.2011.10.009, 2012.

Goel, N. K., Kurothe, R. S., Mathur, B. S., and Vogel, R. M.: A derived
flood frequency distribution for correlated rainfall intensity and duration,
Water Resour. Res., 33, 2103–2107, https://doi.org/10.1029/97WR00812, 1997.

Graf, W. L.: Dam nation: A geographic census of American dams and their
large-scale hydrologic impacts, Water Resour. Res., 35, 1305–1311,
https://doi.org/10.1029/1999WR900016, 1999.

Guo, W., Xia, Z., and Wang, Q.: Effects of Danjiangkou Reservoir on
hydrological regimes in the middle and lower reaches of Hanjiang River,
Journal of Hohai University (Natural Sciences), 36, 733–737, 2008 (in
Chinese).

Jiang, C., Xiong, L., Xu, C.-Y., and Guo, S.: Bivariate frequency analysis
of nonstationary low-flow series based on the time-varying copula, Hydrol.
Process., 29, 1521–1534, https://doi.org/10.1002/hyp.10288, 2014.

Kwon, H.-H., Brown, C., and Lall, U.: Climate informed flood frequency
analysis and prediction in Montana using hierarchical Bayesian modeling,
Geophys. Res. Lett., 35, L05404, https://doi.org/10.1029/2007GL032220, 2008.

Lee, J., Heo, J.-H., Lee, J., and Kim, N.: Assessment of flood frequency
alteration by dam construction via SWAT simulation, Water, 9, 264,
https://doi.org/10.3390/w9040264, 2017.

Liang, Z., Yang, J., Hu, Y., Wang, J., Li, B., and Zhao, J.: A sample
reconstruction method based on a modified reservoir index for flood
frequency analysis of non-stationary hydrological series, Stoch. Env. Res.
Risk A., 32, 1561–1571, https://doi.org/10.1007/s00477-017-1465-1, 2018.

López, J. and Francés, F.: Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates, Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, 2013.

Lu, G., Liu, Y., Zou, X., Zou, Z., and Cai, T.: Impact of the Danjiangkou
Reservoir on the flow regime in the middle and lower reaches of Hanjiang
River, Resources and Environment in the Yangtze Basin, 18, 959–963, 2009
(in Chinese).

Magilligan, F. J. and Nislow, K. H.: Changes in hydrologic regime by dams,
Geomorphology, 71, 61–78, https://doi.org/10.1016/j.geomorph.2004.08.017, 2005.

Martins, E. S. and Stedinger, J. R.: Generalized maximum-likelihood
generalized extreme-value quantile estimators for hydrologic data, Water
Resour. Res., 36, 737–744, https://doi.org/10.1029/1999WR900330, 2000.

Martins, E. S. and Stedinger, J. R.: Generalized maximum likelihood
Pareto-Poisson estimators for partial duration series, Water Resour. Res.,
37, 2551–2557, 2001.

Mei, X., Dai, Z., van Gelder, P. H. A. J. M., and Gao, J.: Linking Three
Gorges Dam and downstream hydrological regimes along the Yangtze River,
China, Earth Space Sci., 2, 94–106, https://doi.org/10.1002/2014EA000052, 2015.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz,
Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead:
Whither Water Management?, Science, 319, 573–574, https://doi.org/10.1029/2001WR000367,
2008.

Nelsen, R.: An Introduction to Copulas. Springer Science & Business
Media, New York, USA, 2007.

Ouarda, T. and El-Adlouni, S.: Bayesian nonstationary frequency analysis of
hydrological variables 1, J. Am. Water Resour. As., 47, 496–505,
https://doi.org/10.1111/j.1752-1688.2011.00544.x, 2011.

Pettitt, A. N.: A non-parametric approach to the change-point problem, J. R.
Stat. Soc., 28, 126–135, 1979.

Reis Jr., D. S. and Stedinger, J. R.: Bayesian MCMC flood frequency analysis
with historical information, J. Hydrol., 313, 97–116,
https://doi.org/10.1016/j.jhydrol.2005.02.028, 2005.

Ribatet, M., Sauquet, E., Grésillon, J.-M., and Ouarda, T. B.:
Usefulness of the reversible jump Markov chain Monte Carlo model in regional
flood frequency analysis, Water Resour. Res., 43, W08403,
https://doi.org/10.1029/2006WR005525, 2007.

Rigby, R. A. and Stasinopoulos, D. M.: Generalized additive models for
location, scale and shape, J. R. Stat. Soc. C.-Appl., 54, 507–554,
https://doi.org/10.1111/j.1467-9876.2005.00510.x, 2005.

Salas, J. D.: Analysis and modeling of hydrologic time series, Handbook of
Hydrology, chap. 19, McGraw Hill, New York, USA, 1–72, 1993.

Scarf, P.: Estimation for a four parameter generalized extreme value
distribution, Commun. Stat.-Theor. M., 21, 2185–2201,
https://doi.org/10.1080/03610929208830906, 1992.

Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464,
1978.

Sklar, M.: Fonctions de repartition an dimensions et leurs marges,
Publications de l'Institut Statistique de l'Université de Paris, 8,
229–231, 1959.

Su, C. and Chen, X.: Assessing the effects of reservoirs on extreme flows
using nonstationary flood frequency models with the modified reservoir index
as a covariate, Adv. Water Resour., 124, 29–40,
https://doi.org/10.1016/j.advwatres.2018.12.004, 2019.

Viglione, A., Merz, R., Salinas, J. L., and Blöschl, G.: Flood frequency
hydrology: 3. A Bayesian analysis, Water Resour. Res., 49, 675–692,
https://doi.org/10.1029/2011WR010782, 2013.

Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., and
Krajewski, W. F.: Flood frequency analysis for nonstationary annual peak
records in an urban drainage basin, Adv. Water Resour., 32, 1255–1266,
https://doi.org/10.1016/j.advwatres.2009.05.003, 2009.

Volpi, E., Di Lazzaro, M., Bertola, M., Viglione, A., and Fiori, A.:
Reservoir effects on flood peak discharge at the catchment scale, Water
Resour. Res., 54, 9623–9636, https://doi.org/10.1029/2018WR023866, 2018.

Wang, W., Li, H. Y., Leung, L. R., Yigzaw, W., Zhao, J., Lu, H., Deng, Z.,
Demisie, Y., and Blöschl, G.: Nonlinear filtering effects of reservoirs
on flood frequency curves at the regional scale, Water Resour. Res., 53,
8277–8292, https://doi.org/10.1002/2017WR020871, 2017.

Wyżga, B., Kundzewicz, Z. W., Ruiz-Villanueva, V., and Zawiejska, J.:
Flood generation mechanisms and changes in principal drivers, in: Flood Risk
in the Upper Vistula Basin, Springer, Cham, Switzerland, 2016.

Xiong, B., Xiong, L., Chen, J., Xu, C.-Y., and Li, L.: Multiple causes of nonstationarity in the Weihe annual low-flow series, Hydrol. Earth Syst. Sci., 22, 1525–1542, https://doi.org/10.5194/hess-22-1525-2018, 2018.

Xiong, L., Jiang, C., Xu, C.-Y., Yu, K. X., and Guo, S.: A framework of
change-point detection for multivariate hydrological series, Water Resour.
Res., 51, 8198–8217, https://doi.org/10.1002/2015WR017677, 2015.

Yan, L., Xiong, L., Liu, D., Hu, T., and Xu, C. Y.: Frequency analysis of
nonstationary annual maximum flood series using the time-varying
two-component mixture distributions, Hydrol. Process., 31, 69–89,
https://doi.org/10.1002/hyp.10965, 2017.

Yang, T., Zhang, Q., Chen, Y. D., Tao, X., Xu, C. Y., and Chen, X.: A
spatial assessment of hydrologic alteration caused by dam construction in
the middle and lower Yellow River, China, Hydrol. Process., 22, 3829–3843,
https://doi.org/10.1002/hyp.6993, 2008.

Zhang, L., Xu, J., Huo, J., and Chen, J.: Study on stage flood control water
level of Danjiangkou Reservoir, Journal of Yangtze River Scientific Research
Institute, 26, 13–16, 2009 (in Chinese).

Zhang, Q., Gu, X., Singh, V. P., Xiao, M., and Chen, X.: Evaluation of flood
frequency under non-stationarity resulting from climate indices and
reservoir indices in the East River basin, China, J. Hydrol., 527, 565–575,
https://doi.org/10.1016/j.jhydrol.2015.05.029, 2015.