Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 447–463, 2019
https://doi.org/10.5194/hess-23-447-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 447–463, 2019
https://doi.org/10.5194/hess-23-447-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jan 2019

Research article | 25 Jan 2019

Statistical approaches for identification of low-flow drivers: temporal aspects

Anne Fangmann and Uwe Haberlandt
Viewed  
Total article views: 1,246 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
892 340 14 1,246 34 39
  • HTML: 892
  • PDF: 340
  • XML: 14
  • Total: 1,246
  • BibTeX: 34
  • EndNote: 39
Views and downloads (calculated since 19 Jun 2018)
Cumulative views and downloads (calculated since 19 Jun 2018)
Viewed (geographical distribution)  
Total article views: 965 (including HTML, PDF, and XML) Thereof 953 with geography defined and 12 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
Latest update: 26 Jan 2020
Publications Copernicus
Download
Short summary
Low-flow events are little dynamic in space and time. Thus, it is hypothesized that models can be found, based on simple statistical relationships between low-flow metrics and meteorological states, that can help identify potential low-flow drivers. In this study we assess whether such relationships exist and whether they can be applied to predict future low flow within regional climate change impact assessment in the northwestern part of Germany.
Low-flow events are little dynamic in space and time. Thus, it is hypothesized that models can...
Citation