Aster, R. C., Borchers, B., and Thurber, C. H.:
Parameter Estimation and Inverse Probl.,
Elsevier, Amsterdam, 2005.

Bernabe, Y., Mok, U., and Evans, B.:
A note on the oscillating flow method for measuring rock permeability,
Int. J. Rock Mech. Min., 43, 311–316, 2005.

Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.:
The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales,
Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015.

Black, J. H. and Kipp, K. L.:
Determination of hydrogeological parameters using sinusoidal pressure tests: A theoretical appraisal,
Water Resour. Res., 17, 686–692, 1981.

Bohling, G. C.:
Sensitivity and resolution of tomographic pumping tests in an alluvial aquifer,
Water Resour. Res., 45, W02420, https://doi.org/10.1029/2008WR007249, 2009.

Bohling, G. C.,
Zhan, X.,
Butler, J. J.,
and Zheng, L.:
Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities,
Water Resour. Res., 38, 60–61, 2002.

Bohling, G. C.,
Butler, J. J.,
Zhan, X.,
and Knoll, M. D.:
A field assessment of the value of steady-shape hydraulic tomography for characterization of aquifer heterogeneities,
Water Resour. Res., 43, W05430, https://doi.org/10.1029/2006WR004932, 2007.

Brauchler, R.,
Liedl, R., and
Dietrich, P.:
A travel time based hydraulic tomographic approach,
Water Resour. Res., 39, 1–12, 2003.

Brauchler, R.,
Cheng, J.-T.,
Dietrich, P.,
Everett, M.,
Johnson, B.,
Liedl, R.,
and Sauter, M.:
An inversion strategy for hydraulic tomography: Coupling travel time and amplitude inversion,
J. Hydrol., 345, 184–198, 2007.

Brauchler, R.,
Hu, R.,
Vogt, T.,
Al-Halbouni, D.,
Heinrichs, T.,
Ptak, T., and
Sauter, M.:
Cross-well slug interference tests: An effective characterization method for resolving
aquifer heterogeneity,
J. Hydrol., 384, 33–45, 2010.

Brauchler, R.,
Hu, R.,
Dietrich, P., and
Sauter, M.:
A field assessment of high-resolution aquifer characterization based on hydraulic
travel time and hydraulic attenuation tomography,
Water Resour. Res., 47, W03503, https://doi.org/10.1029/2010WR009635, 2011.

Brauchler, R.,
Doetsch, J.,
Dietrich, P., and
Sauter, M.:
Derivation of site-specific relationships between hydraulic parameters and p-wave
velocities based on hydraulic and seismic tomography,
Water Resour. Res., 48, W03531, https://doi.org/10.1029/2011WR010868, 2012.

Brauchler, R.,
Hu, R.,
Hu, L.,
Jimenez, S.,
Bayer, P.,
Dietrich, P., and
Ptak, T.:
Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in
unconsolidated sediments,
Water Resour. Res., 49, 2013–2024, 2013.

Butler, J. J.,
McElwee, C. D., and
Bohling, G. C.:
Pumping tests in networks of multilevel sampling wells: motivation and methodology,
Water Resour. Res., 35, 3553–3560, 1999.

Butler, J. J.,
Garnett, E. J., and
Healey, J. M.:
Analysis of slug tests in formations of high hydraulic conductivity,
Groundwater, 41, 620–630, 2003.

Cardiff, M.,
Barrash, W.,
Kitanidis, P. D.,
Malama, B.,
Revil, A.,
Straface, S., and
Rizzo, E.:
A potential-based inversion of unconfined steady-state hydraulic tomography,
Ground Water, 47, 259–270, https://doi.org/10.1111/j.1745-6584.2008.00541.x, 2009.

Cardiff, M.,
Barrash, W., and
Kitanidis, P. K.:
Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities,
Water Resour. Res., 49, 7311–7326, https://doi.org/10.1002/wrcr.20519, 2013a.

Cardiff, M.,
Bakhos, T.,
Kitanidis, P. K., and
Barrash, W.:
Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential,
Water Resour. Res., 49, 5395–5410, https://doi.org/10.1002/wrcr.20356, 2013b.

Cash, J. R.
and Carp, A. H.:
A variable order Runge-Kutta method for initial value problems with rapidly varying
right-hand sides,
ACM Transactions on Mathematical Software,
16, 201–222, 1990.

Cheng, H.,
He, Z., and
Datta-Gupta, A.:
A comparison of travel-time and amplitude matching for field-scale production
data integration: sensitivity, non-linearity, and practical implications,
SPE Journal, 10, 75–90, 2005.

Cohen, J. K. and
Lewis, R. M.:
A ray method for the asymptotic solution of the diffusion equation,
J. I. Math. Appl.,
3, 266–290, 1967.

Coscia, I.,
Greenhalgh, S. A.,
Linde, N.,
Doetsch, J.,
Marescot, L.,
Gunther, T.,
Vogt, T., and
Green, A. G.:
3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water,
Geophysics, 76, G49–G59, https://doi.org/10.1190/1.3553003, 2011.

Coscia, I.,
Linde, N.,
Greenhalgh, S. A.,
Vogt, T., and
Green, A.:
Estimating traveltimes and groundwater flow patterns using 3D time-lapse crosshole ERT imaging of electrical
resistivity fluctuations induced by infiltrating river water,
Geophysics, 77, E239–E250, https://doi.org/10.1190/GEO2011-0328.1, 2012.

Courant, R. and
Hilbert, D.:
Methods of Mathematical Physics,
John Wiley and Sons, New York, 1962.

Day-Lewis, F. D.,
Lane Jr., J. W., and
Gorelick, S. M.:
Combined interpretation of radar, hydraulic, and tracer data from a
fractured-rock aquifer near Mirror Lake, New Hampshire, USA,
Hydrogeol. J., 14, 1–14, https://doi.org/10.1007/s10040-004-0372-y, 2006.

de Marsily, G.:
Quantitative Hydrogeology,
Academic Press, San Diego, 1986.

Doetsch, J.,
Linde, N.,
Coscia, I.,
Greenhalgh, S. A., and
Green, A. G.:
Zonation for 3D aquifer characterization based on joint inversions of multimethod
crosshole geophysical data,
Geophysics, 75, G53–G64, https://doi.org/10.1190/1.3496476, 2010.

Fienen, M. N.,
Clemo, T., and
Kitanidis, P. K.:
An interactive Bayesian geostatistical inverse protocol for hydraulic tomography,
Water Resour. Res., 44, 1–19, https://doi.org/10.1029/2007WR006730, 2008.

Fujita, Y.,
Datta-Gupta, A., and
King, M. J.:
A comprehensive reservoir simulator for unconventional reservoirs based on the
Fast Marching Method and diffusive time of flight,
SPE Journal, 21, https://doi.org/10.2118/173269-PA, 2015.

Garashchuk, S.:
Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential,
J. Chem. Phys., 132, 014112, https://doi.org/10.1063/1.3289728, 2010.

Garashchuk, S. and Vazhappilly, T.:
Multidimensional quantum trajectory dynamics in imaginary time with approximate quantum potential,
J. Phys. Chem., 114, 20595–20602, https://doi.org/10.1021/jp1050244, 2010.

Garashchuk, S.,
Mazzuca, J., and
Vazhappilly, T.:
Efficient quantum trajectory representation of wavefunctions evolving in imaginary time,
J. Chem. Phys., 135, 034104, https://doi.org/10.1063/1.3610165, 2011.

Goldfarb, Y.,
Degani, I., and
Tannor, D. J.:
Bohmian mechanics with complex action: A new trajectory-based formulation for quantum mechanics,
J. Chem. Phys., 125, 1–4, 2006.

Gottlieb, J. and
Dietrich, P.:
Identification of the permeability distribution in soil by hydraulic tomography,
Inverse Probl., 11, 353–360, https://doi.org/10.1088/0266-5611/11/2/005, 1995.

Gu, B. and
Garashchuk, S.:
Quantum dynamics with Gaussian bases defined by quantum trajectories,
J. Phys. Chem., 120, 3023–3031, https://doi.org/10.1021/acs.jpca.5b10029, 2016.

He, Z.,
Datta-Gupta, A., and
Vasco, D. W.:
Rapid inverse modeling of pressure interference tests using trajectory-based traveltime
and amplitude sensitivities,
Water Resour. Res., 42, 1–15, 2006.

Hsieh, P. A.,
Neuman, S. P.,
Stiles, G. K., and
Simpson, E. S.:
Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media, 2
Methodology and application to fractured rocks,
Water Resour. Res., 21, 1667–1676, 1985.

Huang, S.-Y.,
Wen, J.-C.,
Yeh, T.-C. J.,
Lu, W.,
Juan, H.-L.,
Tseng, C.-M.,
Lee, J.-H., and
Chang, K.-C.:
Robustness of joint interpretation of sequential pumping tests: numerical and field experiments,
Water Resour. Res., 47, W10530, https://doi.org/10.1029/2011WR010698, 2011.

Hu, R.,
Brauchler, R.,
Herold, M., and
Bayer, P.:
Hydraulic tomography analog outcrop study: Combining travel time and steady shape inversion,
J. Hydrol., 409, 350–362, 2011.

Hyndman, D. W.,
Harris, J. M., and
Gorelick, S. M.:
Coupled seismic and tracer test inversion for aquifer property characterization,
Water Resour. Res., 30, 1965–1977, 1994.

Hyndman, D. W.,
Harris, J. M., and
Gorelick, S. M.:
Inferrinng the relation between seismic slowness and hydraulic conductivity
in heterogeneous aquifers,
Water Resour. Res., 36, 2121–2132, 2000.

Illman, W. A.,
Liu, X., and
Craig, A.:
Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity:
multimethod and and multiscale validation of hydraulic conductivity tomograms,
J. Hydrol., 341, 222–234, https://doi.org/10.1016/j.jhydrol.2007.05.011, 2007.

Illman, W. A.,
Craig, A. J., and
Liu, X.:
Practical issues in imaging hydraulic conductivity through hydraulic tomography,
Ground Water, 46, 120–132, https://doi.org/10.1111/j.1745-6584.2007.00374.x, 2008.

Jacquard, P. and
Jain, C.:
Permeability distribution from field pressure data,
Society of Petroleum Engineering Journal, 5, 281–294, 1965.

Jimenez, S.,
R. Brauchler,
Hu, R.,
Hu, L.,
Schmidt, S.,
Ptak, T., and
Bayer, P.:
Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity
and specific storage tomograms,
Water Resour. Res., 51, 5504–5520, 2015.

Jimenez, S.,
Mariethoz, G.,
Brauchler, R.,
and
Bayer, P.:
Smart pilot points using reversible-jump Markov-chain Monte Carlo,
Water Resour. Res., 52, 3966–3983, https://doi.org/10.1002/2015WR017922, 2016.

Karasaki, K.,
Freifeld, B.,
Cohen, A.,
Grossenbacher, K.,
Cook, P., and
Vasco, D.:
A multidisciplinary fractured rock characterization study at the Raymond field site, Raymond California,
J. Hydrol., 236, 17–34, 2000.

Klotzsche, A.,
van der Kruk, J.,
Meles, G. A.,
Doetsch, J.,
Maurer, H., and
Linde, N.:
Full-waveform inversion of cross-hole ground-penetrating radar data to characterize a
gravel aquifer close to the Thur River, Switzerland,
Near Surf. Geophys., 8, 635–649, https://doi.org/10.3997/1873-0604.2010054, 2010.

Kong, X.-Z.,
Deuber, C. A., Kittila, A., Somogyvari, M., Mikutis, G., Bayer, P.,
Stark, W. J., and Saar, M. O.:
Tomographic reservoir imaging with DNA-labeled silica nanotracers: The first field validation,
Envir. Sci. Tech., 52, 13681–13689, https://doi.org/10.1021/acs.est.8b04367, 2018.

Kowalsky, M. B.,
Finsterle, S., and
Rubin, Y.:
Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements
during transient flow in the vadose zone,
Adv. Water Resour., 27, 583–599, https://doi.org/10.1016/j.advwatres.2004.03.003, 2004.

Kuo, C.:
Determination of reservoir properties from sinusoidal and multirate flow tests in one or more wells,
Society of Petroleum Engineering Journal, 12, 499–507, 1972.

Kulkarni, K. N.,
Datta-Gupta, A., and
Vasco, D. W.:
A streamline approach for integrating transient pressure data into high-resolution reservoir models,
SPE Journal, 6, 273–282, 2001.

Lee, J. and
Kitanidis, P. K.:
Large-scale hydraulic tomography and joint inversion of head and tracer data
using the Principal Component Geostatistical Approach (PCGA),
Water Resour. Res., 50, 5410–5427, https://doi.org/10.1002/2014WR015483, 2014.

Li, W.,
Nowak, W., and
Cirpka, O. A.:
Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown,
Water Resour. Res., 41, W08403, https://doi.org/10.1029/2004WR003874, 2005.

Linde, N. and
Doetsch, J.:
Joint inversion in hydrogeophysics and near-surface geophysics,
in:
Integrated Imaging of the Earth, edited by: Moorkamp, M., Lelievre, P. G., Linde, N., and Khan, A., 218, 119–135, AGU Geophysical Monograph Series, John Wiley and Sons Inc, Hoboken, NJ, 2016.

Liu, J. and Makri, N.:
Bohm's formulation in imaginary time: estimation of energy eigenvalues,
Mol. Phys., 103, 1083–1090, https://doi.org/10.1080/00268970512331339387, 2005.

Liu, X.,
Zhou, Q.,
Birkholzer, J., and
Illmann, W. A.:
Geostatistical reduced-order models in underdetermined inverse problems,
Water Resour. Res., 49, 6587–6600, 2013.

Lochbühler, T.,
Doetsch, J.,
Brauchler, R., and
Linde, N.:
Structure-coupled joint inversion of geophysical and hydrological data,
Geophysics, 78, ID1–ID14, https://doi.org/10.1190/GEO2012-0460.1, 2013.

Marchesini, P.,
Ajo-Franklin, J. B., and
Daley, T. M.:
In situ measurement of velocity-stress sensitivity using
crosswell continuous active-source seismic monitoring,
Geophysics, 82, D319–D326, https://doi.org/10.1190/GEO2017-0106.1, 2017.

Menke, W.:
Geophysical Data Analysis: Discrete Inverse Theory, Academic Press,
San Diego, 2012.

Osher, S. and
Fedkiw, R.:
Level Set Methods and Dynamic Implicit Surfaces,
Springer, New York, 2003.

Paige, C. C. and Saunders, M. A.:
LSQR: An algorithm for sparse linear equations and sparse least squares,
ACM Trans. Math. Software, 8, 43–71, 1982.

Paillet, F. L.:
Using borehole geophysics and cross-borehole flow testing to define connections
between fracture zones in bedrock aquifers,
J. Appl. Geophys., 30, 261–279, 1993.

Paradis, D.,
Gloaguen, E.,
Lefebvre, R., and
Giroux, B.:
Resolution analysis of tomographic slug tests head data: two-dimensional radial case,
Water Resour. Res., 51, 2356–2376, https://doi.org/10.1002/2013WR014785, 2015.

Paradis, D.,
Lefebvre, R.,
Gloaguen, E., and
Giroux, B.:
Comparison of slug and pumping tests for hydraulic tomography experiments: a practical perspective,
Environ. Earth Sci., 75, 1–13, https://doi.org/10.1007/s12665-016-5935-4, 2016.

Parker, R. L.:
Geophysical Inverse Theory,
Princeton University Press, Princeton, 1994.

Podvin, P. and
Lecomte, I.:
Finite-difference computation of traveltimes in
very contrasted velocity models: A massively parallel approach and its associated tools,
Geophys. J. Int., 105, 271–284, 1991.

Press, W. H.,
Teukolsky, S. A.,
Vetterling, W. T.,
and Flannery, B. P.:
Numerical Recipes,
Cambridge University Press, Cambridge, 1992.

Pruess, K.,
Oldenburg, C., and
Moridis, G.:
TOUGH2 User's Guide, Version 2.0,
LBNL Report, 43134, Berkeley, 1999.

Rasmussen, T. C.,
Haborak, K. G., and
Young, M. H.:
Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River Site,
South Carolina, USA,
Hydrogeol. J., 11, 466–482, 2003.

Renner, J. and
Messar, M.:
Periodic pumping tests,
Geophys. J. Int., 167, 479–493, 2006.

Rubin, Y.,
Mavko, G., and
Harris, J. M.:
Mapping permeability in heterogeneous aquifers using hydrological and seismic data,
Water Resour. Res., 28, 1192–1200, 1992.

Rucci, A.,
Vasco, D. W., and
Novali, F.:
Fluid pressure arrival-time tomography: Estimation and assessment
in the presence of inequality constraints with an application to production
at the Krechba field, Algeria,
Geophysics, 75, O39–O55, https://doi.org/10.1190/1.3493504, 2010.

Ruggeri, P.,
Gloaguen, E.,
Lefebvre, R.,
Irving, J., and
Holliger, K.:
Integration of hydrological and geophysical data beyond the local scale: Application
of Bayesian sequential simulation to field data from the Saint-Lambert-de-Lauzon site, Quebec, Canada,
J. Hydrol., 514, 271–280, 2014.

Sethian, J. A.:
Level Set Methods and Fast Marching Methods,
Cambridge University Press, Cambridge, 1999.

Somogyvari, M.
and Bayer, P.:
Field validation of thermal tracer tomography for reconstruction of aquifer heterogeneity,
Water Resour. Res., 53, 5070–5084, https://doi.org/10.1002/2017WR020543, 2017.

Soueid Ahmed, A.,
Jardani, A.,
Revil, A., and
Dupont, J. P.:
Hydraulic conductivity field characterization from the joint inversion of hydraulic
heads and self-potential data,
Water Resour. Res., 50, 3502–3522, 2014.

Sun, R.,
Yeh, T.-C. J.,
Mao, D.,
Jin, M.,
Lu, W., and
Hao, Y.:
A temporal sampling strategy for hydraulic tomography analysis,
Water Resour. Res., 49, 3881–3896, https://doi.org/10.1002/wrcr.20337, 2013.

Tarantola, A.:
Inverse Problem Theory,
Society of Industrial and Applied Mathematics, Philadelphia, 2005.

Tosaka, H.,
Masumoto, K., and
Kojima, K.:
Hydropulse tomography for identifying 3-D permeability distribution in high level radioactive waste management,
Proceedings of the 4th Annual International Conference of the American Society of Civil Engineers,
Reston, Virgina, 995–959, 1993.

Vasco, D. W.:
Estimation of flow properties using surface deformation and head data:
A trajectory-based approach,
Water Resour. Res.,
40, W10104, https://doi.org/10.1029/2004WR003272, 2004.

Vasco, D. W.:
Zeroth-order inversion of transient pressure observations,
Inverse Probl.,
24, 1–21, https://doi.org/10.1088/0266-5611/24/2/025013, 2008.

Vasco, D. W.:
An extended trajectory mechanics approach for calculating the path of a
pressure transient: Derivation and illustration,
Water Resour. Res., 54, 1–19, https://doi.org/10.1002/2017WR021360, 2018.

Vasco, D. W. and
Datta-Gupta, A.:
Subsurface Fluid Flow and Imaging,
Cambridge University Press, Cambridge, 2016.

Vasco, D. W. and
Karasaki, K.:
Inversion of pressure observations: an integral formulation,
J. Hydrol.,
253, 27–40, 2001.

Vasco, D. W. and
Nihei, K.:
Broad-band trajectory mechanics,
Geophys. J. Int.,
216, 745–759, https://doi.org/10.1093/gji/ggy435, 2019.

Vasco, D. W.,
Datta-Gupta, A., and
Long, J. C. S.:
Resolution and uncertainty in hydrological characterization,
Water Resour. Res.,
33, 379–397, https://doi.org/10.1029/96WR03301, 1997.

Vasco, D. W.,
Keers, H., and
Karasaki, K.:
Estimation of reservoir properties using transient pressure data: An asymptotic approach,
Water Resour. Res., 36, 3447–3465, 2000.

Vasco, D. W.,
Karasaki, K., and
Kishida, K.:
A coupled inversion of pressure and surface displacement,
Water Resour. Res., 37, 3071–3089, 2001.

Vasco, D. W.,
Pride, S. R.,
Zahasky, C., and
Benson, S. M.:
Calculating trajectories associated with solute transport in a heterogeneous medium,
Water Resour. Res., 54, 1–19, https://doi.org/10.1029/2018WR023019, 2018a.

Vasco, D. W., Doetsch, J., and Brauchler, R.: Widen Field Test Pressure Data – P02 Experiment, Data set, Zenodo, https://doi.org/10.5281/zenodo.1445756, 2018b.

Virieux, J.,
Flores-Luna, C., and
Gibert, D.:
Asymptotic theory for diffusive electromagnetic imaging,
Geophys. J. Int., 119, 857–868, 1994.

Wyatt, R. E.:
Quantum Dynamics with Trajectories,
Springer, New York, 2005.

Yeh, T.-C. J. and
Liu, S.:
Hydraulic tomography: development of a new aquifer test method,
Water Resour. Res., 36, 2095–2105, 2000.

Yeh, T.-C. J.,
Lee, C. H.,
Hsu, K. C., and
Wen, J. C.:
Fusion of hydrologic and geophysical tomographic surveys,
Geosci. J., 12, 159–167, 2008.

Yin, D. and
Illman, W. A.:
Hydraulic tomography using temporal moments of drawdown recovery data: A laboratory sandbox study,
Water Resour. Res., 45, W01502, https://doi.org/10.1029/2007WR006623, 2009.

Zha, Y.,
Yeh, T.-C. J.,
Illman, W. A.,
Zheng, W.,
Zhang, Y.,
Sun, F., and
Shi, L.:
A reduced-order successive linear estimator for geostatistical inversion and its application in
hydraulic tomography,
Water Resour. Res., 54, 1616–1632, https://doi.org/10.1002/2017WR021884, 2018.

Zhang, Y.,
Bansal, N.,
Fujita, Y.,
Datta-Gupta, A.,
King, M. J., and
Sankaran, S.:
From streamlines to Fast Marching: Rapid simulation and performance assessment of shale
gas reservoirs using diffusive time of flight as a spatial coordinate,
SPE Journal, 21, 1–16, https://doi.org/10.2118/168997-PA, 2014.

Zhu, J. and
Yeh, T.-C. J.:
Analysis of hydraulic tomography using temporal moments of drawdown recovery data,
Water Resour. Res., 42, W02403, https://doi.org/10.1029/2005WR004309, 2006.