Adirosi, E., Roberto, N., Montopoli, M., Gorgucci, E., and Baldini, L.:
Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD:
Application to Italian Climatology, Atmosphere, 9, 360,
https://doi.org/10.3390/atmos9090360, 2018.
Angulo-Martínez, M., Beguería, S., Latorre, B., and Fernández-Raga, M.: Comparison of precipitation measurements by OTT
Parsivel2 and Thies LPM optical disdrometers, Hydrol. Earth Syst. Sci.,
22, 2811–2837, https://doi.org/10.5194/hess-22-2811-2018, 2018.
Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar
characteristics of precipitation at vertical incidence, Rev. Geophys., 11, 1–35, https://doi.org/10.1029/RG011i001p00001, 1973.
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL Snow Observations: A Critical Assessment, J. Atmos. Ocean. Tech., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010.
Baumgardner, D., Kok, G., Dawson, W., O'Connor, D., and Newton, R.: A new groundbased precipitation spectrometer: The Meteorological Particle Sensor (MPS), in: 11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., 8.6, available at: https://ams.confex.com/ams/pdfpapers/ 41834.pdf (last access: 17 November 2019), 2002.
Beard, K. V.: Terminal velocity adjustment for cloud and precipitation drops
aloft, J. Atmos. Sci., 34, 1293–1298,
https://doi.org/10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2, 1977.
Brandes, E. A., Zhang, G., and Vivekanandan, J.: Experiments in Rainfall
Estimation with a Polarimetric Radar in a Subtropical Environment, J. Appl. Meteorol., 41, 674–685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2, 2002.
Brawn, D. and Upton, G.: Estimation of an atmospheric gamma drop size
distribution using disdrometer data, Atmos. Res., 87, 66–79, https://doi.org/10.1016/j.atmosres.2007.07.006, 2008.
Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., and Schoenhuber, M.: Raindrop Size Distribution in Different Climatic Regimes
from Disdrometer and Dual-Polarized Radar Analysis, J. Atmos. Sci., 60, 354–365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2, 2003.
Chen, B., Wang, J., and Gong, D.: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China, J. Appl. Meteorol. Clim., 55, 621–634, https://doi.org/10.1175/JAMC-D-15-0127.1, 2016.
Comstock, K. K., Wood, R., Yuter, S. E., and Bretherton, C. S.: Reflectivity
and rain rate in and below drizzling stratocumulus, Q. J. Roy. Meteorol. Soc., 130, 2891–2918, https://doi.org/10.1256/qj.03.187, 2004.
de Moraes Frasson, R. P., da Cunha, L. K., and Krajewski, W. F.: Assessment of the Thies optical disdrometer performance, Atmos. Res., 101, 237–255, https://doi.org/10.1016/j.atmosres.2011.02.014, 2011.
Dolan, B., Rutledge, S. A., Lim, S., Chandrasekar, V., and Thurai, M.: A
robust C-band hydrometeor identification algorithm and application to a
long-term polarimetric radar dataset, J. Appl. Meteorol. Clim., 52, 2162–2186, https://doi.org/10.1175/JAMC-D-12-0275.1, 2013.
Fuchs, N. and Petrjanoff, I.: Microscopic examination of fog-, cloud- and
rain droplets, Nature, 139, 111–112, 1937.
Giangrande, S. E., Bartholomew, M. J., Pope, M., Collis, S., and Jensen, M. P. A.: Summary of precipitation characteristics from the 2006–11 northern
Australian wet seasons as revealed by ARM disdrometer research facilities
(Darwin, Australia), J. Appl. Meteorol. Clim., 53, 1213–1231, https://doi.org/10.1175/JAMC-D-13-0222.1, 2014.
Hardin, J. and Guy, N.: PyDSD v1.0, https://doi.org/10.5281/zenodo.9991, 2017.
Illingworth, A. J. and Stevens, C. J.: An optical disdrometer for the
measurement of raindrop size spectra in windy conditions, J. Atmos. Ocean. Tech., 4, 411–421,
https://doi.org/10.1175/1520-0426(1987)004<0411:AODFTM>2.0.CO;2, 1987.
Islam, T., Rico-Ramirez, M. A., Han, D., and Srivastava, P. K.: A
Joss–Waldvogel disdrometer derived rainfall estimation study by co-located
tipping bucket and rapid response rain gauges, Atmos. Sci. Lett., 13, 139–150, https://doi.org/10.1002/asl.376, 2012.
ITU: Specific attenuation model for rain for use in prediction
methods, Recommendation ITU-R P. 838, 3, available at: http://www.itu.int/dms_pubrec/itu-r/rec/p/r-rec-p.838-3-200503-i!!pdf-e.pdf (last access: 17 November 2019), 2005.
Jaffrain, J. and Berne, A.: Experimental quantification of the sampling
uncertainty associated with measurements from PARSIVEL disdrometers, J.
Hydrometeorol., 12, 352–370, https://doi.org/10.1175/2010JHM1244.1, 2011.
Jaffrain, J. and Berne, A.: Influence of the subgrid variability of the
raindrop size distribution on radar rainfall estimators, J. Appl. Meteorol. Clim., 51, 780–785, https://doi.org/10.1175/JAMC-D-11-0185.1, 2012a.
Jaffrain, J. and Berne, A.: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers, J. Appl. Meteorol. Clim., 51, 941–953, https://doi.org/10.1175/JAMC-D-11-0136.1, 2012b.
Jaffrain, J., Studzinski, A., and Berne, A.: A network of disdrometers to
quantify the small-scale variability of the raindrop size distribution, Water Resour. Res., 47, W00H06, https://doi.org/10.1029/2010WR009872, 2011.
Joss, J. and Waldvogel, A.: Ein spektrograph für niederschlagstropfen mit automatischer auswertung, Pure Appl. Geophys., 68, 240–246,
https://doi.org/10.1007/BF00874898, 1967.
Joss, J. and Waldvogel, A.: Raindrop Size Distribution and Sampling Size Errors, J. Atmos. Sci., 26, 566–569, https://doi.org/10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2, 1969.
Kathiravelu, G., Lucke, T., and Nichols, P.: Rain drop measurement techniques: a review, Water, 8, 29, https://doi.org/10.3390/w8010029, 2016.
Klepp, C., Michel, S., Protat, A., Burdanowitz, J., Albern, N., Kähnert, M., Dahl, A., Louf, V., Bakan, S., and Buehler, S. A.: OceanRAIN, a new in-situ shipboard global ocean surface-reference dataset of all water cycle components, Scient. Data, 5, 180122, https://doi.org/10.1038/sdata.2018.122, 2018.
Krajewski, W. F. and Smith, J. A.: Radar hydrology: rainfall estimation,
Adv. Water Resour., 25, 1387–1394, https://doi.org/10.1016/S0309-1708(02)00062-3, 2002.
Kruger, A. and Krajewski, W. F.: Two-Dimensional Video Disdrometer: A
Description, J. Atmos. Ocean. Tech., 19, 602–617,
https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2, 2002.
Leinonen, J.: High-level interface to T-matrix scattering calculations:
architecture, capabilities and limitations, Opt. Express, 22, 1655–1660, https://doi.org/10.1364/OE.22.001655, 2014.
Louf, V., Protat, A., Warren, R. A., Collis, S. M., Wolff, D. B., Raunyiar, S., Jakob, C. and Petersen, W. A.: An Integrated Approach to Weather Radar
Calibration and Monitoring Using Ground Clutter and Satellite Comparisons, J. Atmos. Ocean. Tech., 36, 17–39, https://doi.org/10.1175/JTECH-D-18-0007.1, 2019.
Mace, G. G. and Protat, A.: Clouds over the Southern Ocean as Observed from
the R/V Investigator during CAPRICORN. Part I: Cloud Occurrence and Phase
Partitioning, J. Appl. Meteorol., 57, 1783–1803, https://doi.org/10.1175/JAMC-D-17-0194.1, 2018a.
Mace, G. G. and Protat, A.: Clouds over the Southern Ocean as observed from
the R/V Investigator during CAPRICORN. Part II: The properties of
nonprecipitating stratocumulus, J. Appl. Meteorol. Clim., 57, 1805–1823, https://doi.org/10.1175/JAMC-D-17-0195.1, 2018b.
Maki, M., Keenan, T. D., Sasaki, Y., and Nakamura, K.: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia, J. Appl. Meteorol., 40, 1393–1412,
https://doi.org/10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2, 2001.
Marshall, J. S. and Palmer, W. M.: The distribution of raindrops with size, J. Meteorol., 5, 165–166, 1948.
Marshall, J. S., Hitschfeld, W., and Gunn, K. L. S.: Advances in radar weather, Adv. Geophys., 2, 1–56, https://doi.org/10.1016/S0065-2687(08)60310-6, 1955.
Marzuki, M., Hashiguchi, H., Yamamoto, M. K., Mori, S., and Yamanaka, M. D.: Regional variability of raindrop size distribution over Indonesia, Ann. Geophys., 31, 1941–1948, https://doi.org/10.5194/angeo-31-1941-2013, 2013.
Merenti-Välimäki, H. L., Lönnqvist, J., and Laininen, P.: Present weather: comparing human observations and one type of automated sensor, Meteorol. Appl., 8, 491–496, 2001.
Moré, J. J.: The Levenberg-Marquardt algorithm: implementation and
theory, in: Numerical analysis, Springer, Berlin, Heidelberg, 105–116, 1978.
Nawaby, A. S.: A method of direct measurement of spray droplets in an oil
bath, J. Agr. Eng. Res., 15, 182–184, 1970.
Penide, G., Kumar, V. V., Protat, A., and May, P. T.: Statistics of drop size
distribution parameters and rain rates for stratiform and convective
precipitation during the north Australian wet season, Mon. Weather Rev., 141, 3222–3237, https://doi.org/10.1175/MWR-D-12-00262.1, 2013.
Petan, S., Rusjan, S., Vidmar, A., and Mikoš, M.: The rainfall kinetic
energy–intensity relationship for rainfall erosivity estimation in the
mediterranean part of Slovenia, J. Hydrol., 391, 314–321,
https://doi.org/10.1016/j.jhydrol.2010.07.031, 2010.
Raupach, T. H. and Berne, A.: Correction of raindrop size distributions
measured by Parsivel disdrometers, using a two-dimensional video disdrometer
as a reference, Atmos. Meas. Tech., 8, 343–365, https://doi.org/10.5194/amt-8-343-2015, 2015.
Raupach, T. H., Thurai, M., Bringi, V. N., and Berne, A.: Reconstructing the
Drizzle Mode of the Raindrop Size Distribution Using Double-Moment
Normalization, J. Appl. Meteorol. Clim., 58, 145–164, https://doi.org/10.1175/JAMC-D-18-0156.1, 2019.
Sarkar, S., Phibbs, P., Simpson, R., and Wasnik, S.: The scaling of income
distribution in Australia: Possible relationships between urban allometry,
city size, and economic inequality, Environ. Plan. B, 45, 603–622,
https://doi.org/10.1177/0265813516676488, 2018.
Sarkar, T., Das, S., and Maitra, A.: Assessment of different raindrop size
measuring techniques: Inter-comparison of Doppler radar, impact and optical
disdrometer, Atmos. Res., 160, 15–27, https://doi.org/10.1016/j.atmosres.2015.03.001, 2015.
Schönhuber, M., Lammer, G., and Randeu, W. L.: The 2D-Video-Distrometer,
in: Precipitation: Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S., Springer, Berlin, Heidelberg, 3–31, 2008.
Sheather, S. J. and Jones, M. C.: A reliable data-based bandwidth selection method for kernel density estimation, J. Roy. Stat. Soc. B, 53, 683–690, 1991.
Tapiador, F. J., Checa, R., and de Castro, M.: An experiment to measure the
spatial variability of Rain Drop size distribution using sixteen laser
disdrometers, Geophys. Res. Lett., 37, L16803, https://doi.org/10.1029/2010GL044120, 2010.
Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X.: The Concept of
“Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud
Physics and Cloud Remote Sensing, J. Appl. Meteorol., 40, 1118–1140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2, 2001.
Thompson, E. J., Rutledge, S. A., Dolan, B., Thurai, M., and Chandrasekar, V.: Dual-Polarization Radar Rainfall Estimation over Tropical Oceans, J. Appl. Meteorol. Clim., 57, 755–775, https://doi.org/10.1175/JAMC-D-17-0160.1, 2018.
Thurai, M. and Bringi, V. N.: Application of the generalized gamma model to
represent the full rain drop size distribution spectra, J. Appl. Meteorol. Clim., 57, 1197–1210, https://doi.org/10.1175/jamc-d-17-0235.1, 2018.
Thurai, M., Bringi, V. N., and May, P. T.: Drop shape studies in rain using
2-D video disdrometer and dual-wavelength, polarimetric CP-2 radar
measurements in south-east Queensland, Australia, in: Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, 2009.
Thurai, M., Bringi, V. N., and May, P. T.: CPOL radar-derived drop size
distribution statistics of stratiform and convective rain for two regimes in
Darwin, Australia, J. Atmos. Ocean. Tech., 27, 932–942, https://doi.org/10.1175/2010JTECHA1349.1, 2010.
Thurai, M., Mishra, K. V., Bringi, V. N., and Krajewski, W. F.: Initial Results of a New Composite-Weighted Algorithm for Dual-Polarized X-Band Rainfall Estimation, J. Hydrometeorol., 18, 1081–1100, https://doi.org/10.1175/JHM-D-16-0196.1, 2017.
Thurai, M., Bringi, V., Gatlin, P. N., Petersen, W. A., and Wingo, M. T.:
Measurements and Modeling of the Full Rain Drop Size Distribution, Atmosphere, 10, 39, https://doi.org/10.3390/atmos10010039, 2019.
Tokay, A., Petersen, W. A., Gatlin, P., and Wingo, M.: Comparison of raindrop
size distribution measurements by co-located disdrometers, J. Atmos. Ocean. Tech., 30, 1672–1690, https://doi.org/10.1175/JTECH-D-12-00163.1, 2013.
Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2, J. Atmos. Ocean. Tech., 31, 1276–1288, https://doi.org/10.1175/JTECH-D-13-00174.1, 2014.
Uijlenhoet, R. and Stricker, J. N. M.: A consistent rainfall parameterization
based on the exponential raindrop size distribution, J. Hydrol., 218, 101–127, https://doi.org/10.1016/S0022-1694(99)00032-3, 1999.
Uijlenhoet, R.: Raindrop size distributions and radar reflectivity–rain
rate relationships for radar hydrology, Hydrol. Earth Syst. Sci., 5, 615–628, https://doi.org/10.5194/hess-5-615-2001, 2001.
Uijlenhoet, R. and Sempere Torres, D.: Measurement and parameterization of
rainfall microstructure, J. Hydrol., 328, 1–7, https://doi.org/10.1016/j.jhydrol.2005.11.038, 2006.
Uijlenhoet, R., Smith, J. A., and Steiner, M.: The microphysical structure of
extreme precipitation as inferred from ground-based raindrop spectra,
J. Atmos. Sci., 60, 1220–1238, https://doi.org/10.1175/1520-0469(2003)60<1220%3ATMSOEP>2.0.CO%3B2, 2003a.
Uijlenhoet, R., Steiner, M., and Smith, J. A.: Variability of raindrop size
distributions in a squall line and implications for radar rainfall
estimation, J. Hydrometeorol., 4, 43–61,
https://doi.org/10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2,
2003b.
Uijlenhoet, R., Porrà, J. M., Sempere-Torres, D., and Creutin, J.-D.:
Analytical solutions to sampling effects in drop size distribution
measurements during stationary rainfall: Estimation of bulk rainfall
variables, J. Hydrol., 328, 65–82, https://doi.org/10.1016/j.jhydrol.2005.11.043, 2006.
Ulbrich, C. W.: Natural Variations in the Analytical Form of the Raindrop
Size Distribution, J. Clim. Appl. Meteorol., 22, 1764–1775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2, 1983.
Ulbrich, C. W. and Atlas, D.: Rainfall Microphysics and Radar Properties:
Analysis Methods for Drop Size Spectra, J. Appl. Meteorol., 37, 912–923,
https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2, 1998.
Vali, G., Kelly, R. D., French, J., Haimov, S., Leon, D., McIntosh, R. E.,
and Pazmany, A.: Finescale structure and microphysics of coastal stratus, J. Atmos. Sci., 55, 3540–3564, https://doi.org/10.1175/1520-0469(1998)055<3540:FSAMOC>2.0.CO;2, 1998.
Verdon-Kidd, D. C. and Kiem, A. S.: On the relationship between large-scale
climate modes and regional synoptic patterns that drive Victorian rainfall, Hydrol. Earth Syst. Sci., 13, 467–479, https://doi.org/10.5194/hess-13-467-2009, 2009.
Williams, C. R., Bringi, V. N., Carey, L. D., Chandrasekar, V., Gatlin, P. N., Haddad, Z. S., Meneghini, R., Joseph Munchak, S., Nesbitt, S. W., Petersen, W. A., Tanelli, S., Tokay, A., Wilson, A., and Wolff, D. B.: Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters, J. Appl. Meteorol. Clim., 53, 1282–1296, https://doi.org/10.1175/JAMC-D-13-076.1, 2014.