Abbasian, M., Moghim, S., and Abrishamchi, A.: Performance of the general
circulation models in simulating temperature and precipitation over Iran,
Theor. Appl. Climatol., 135, 1465–1483, https://doi.org/10.1007/s00704-018-2456-y, 2019.
Acharya, N., Singh, A., Mohanty, U. C., Nair, A., and Chattopadhyay, S.:
Performance of general circulation models and their ensembles for the
prediction of drought indices over India during summer monsoon, Nat.
Hazards, 66, 851–871, https://doi.org/10.1007/s11069-012-0531-8, 2013.
Afshar, A. A., Hasanzadeh, Y., Besalatpour, A. A., and Pourreza-Bilondi, M.:
Climate change forecasting in a mountainous data scarce watershed using
CMIP5 models under representative concentration pathways, Theor. Appl.
Climatol., 129, 683–699, https://doi.org/10.1007/s00704-016-1908-5, 2016.
Ahmadalipour, A., Rana, A., Moradkhani, H., and Sharma, A.: Multi-criteria
evaluation of CMIP5 GCMs for climate change impact analysis, Theor. Appl.
Climatol., 128, 71–87, https://doi.org/10.1007/s00704-015-1695-4, 2017.
Ahmed, K., Shahid, S., and Harun, S. B.: Spatial interpolation of climatic
variables in a predominantly arid region with complex topography,
Environment Systems and Decisions, 34, 555–563, 2014.
Ahmed, K., Shahid, S., Chung, E.-S., Ismail, T., and Wang, X.-J.: Spatial
distribution of secular trends in annual and seasonal precipitation over
Pakistan, Clim. Res., 74, 95–107, 2017.
Ahmed, K., Shahid, S., Chung, E.-S., Wang, X.-J., and Harun, S. B.: Climate
Change Uncertainties in Seasonal Drought Severity-Area-Frequency Curves:
Case of Arid Region of Pakistan, J. Hydrol., 570, 473–485,
https://doi.org/10.1016/j.jhydrol.2019.01.019, 2019a.
Ahmed, K., Shahid, S., Nawaz, N., and Khan, N.: Modeling climate change
impacts on precipitation in arid regions of Pakistan: a non-local model
output statistics downscaling approach, Theor. Appl. Climatol., 137,
1347–1364, https://doi.org/10.1007/s00704-018-2672-5, 2019b.
Ahmed, K., Shahid, S., Sachindra, D. A., Nawaz, N., and Chung, E.-S.:
Fidelity assessment of general circulation model simulated precipitation and
temperature over Pakistan using a feature selection method, J. Hydrol., 573,
281–298, https://doi.org/10.1016/j.jhydrol.2019.03.092, 2019c.
Ahmed, K., Shahid, S., Wang, X., Nawaz, N., and Khan, N.: Spatiotemporal changes in aridity of Pakistan during 1901–2016, Hydrol. Earth Syst. Sci., 23, 3081–3096, https://doi.org/10.5194/hess-23-3081-2019, 2019d.
Akhter, J., Das, L., and Deb, A.: CMIP5 ensemble-based spatial rainfall
projection over homogeneous zones of India, Clim. Dynam., 49, 1885–1916, https://doi.org/10.1007/s00382-016-3409-8, 2017.
Barfus, K. and Bernhofer, C.: Assessment of GCM capabilities to simulate
tropospheric stability on the Arabian Peninsula, Int. J. Climatol., 35,
1682–1696, 2015.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Byg, A. and Salick, J.: Local perspectives on a global phenomenon – Climate
change in Eastern Tibetan villages, Global Environ. Chang., 19,
156–166, https://doi.org/10.1016/j.gloenvcha.2009.01.010, 2009.
Cameron, F.: Climate change as a complex phenomenon and the problem of
cultural governance, Museum Soc., 9, 84–89, 2011.
Chandler, R. E.: Exploiting strength, discounting weakness: combining
information from multiple climate simulators, Phil. Trans. R. Soc. A, 371,
20120388, https://doi.org/10.1098/rsta.2012.0388, 2013.
Chen, F.-W. and Liu, C.-W.: Estimation of the spatial rainfall distribution
using inverse distance weighting (IDW) in the middle of Taiwan, Paddy Water Environ., 10, 209–222, https://doi.org/10.1007/s10333-012-0319-1, 2012.
Chen, W., Jiang, Z., and Li, L.: Probabilistic projections of climate change
over China under the SRES A1B scenario using 28 AOGCMs, J. Climate, 24,
4741–4756, 2011.
Cramér, H.: Mathematical methods of statistics (PMS-9), Princeton
University Press, Princeton, USA, 1999.
Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., and Stisen, S.: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.
Evans, T. E.: The effects of changes in the world hydrological cycle on
availability of water resources, Global Climate Change and Agricultural
Production: Direct and Indirect Effects of Changing Hydrological,
Pedological and Plant Physiological Processes, John Wiley & Sons Ltd,
Chichester, West Sussex, England, 1996.
Folberth, C., Baklanov, A., Balkovič, J., Skalský, R., Khabarov, N.,
and Obersteiner, M.: Spatio-temporal downscaling of gridded crop model yield
estimates based on machine learning, Agr. Forest Meteorol., 264, 1–15, 2019.
Gao, Y., Wang, H., and Jiang, D.: An intercomparison of CMIP5 and CMIP3
models for interannual variability of summer precipitation in Pan-Asian
monsoon region, Int. J. Climatol., 35, 3770–3780, 2015.
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range,
and reliability of regional climate changes from AOGCM simulations via the
“reliability ensemble averaging” (REA) method, J. Climate, 15, 1141–1158,
2002.
Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for
climate models, J. Geophys. Res.-Atmos., 113, D06104, https://doi.org/10.1029/2007JD008972, 2008.
Goodman, L. A. and Kruskal, W. H.: Measures of association for cross
classifications, J. Am. Stat. Assoc., 49,
732–764, 1954.
Gu, H., Yu, Z., Wang, J., Wang, G., Yang, T., Ju, Q., Yang, C., Xu, F., and
Fan, C.: Assessing CMIP5 general circulation model simulations of
precipitation and temperature over China, Int. J. Climatol., 35, 2431–2440,
2015.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91, 2009.
Hargrove, W. W., Hoffman, F. M., and Hessburg, P. F.: Mapcurves: a
quantitative method for comparing categorical maps, J. Geog. Syst., 8, 187, https://doi.org/10.1007/s10109-006-0025-x, 2006.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hayhoe, K., Edmonds, J., Kopp, R., LeGrande, A., Sanderson, B., Wehner, M.,
and Wuebbles, D.: Climate models, scenarios, and projections, US Global Change Research Program, Washington, D.C., USA, 133–160, https://doi.org/10.7930/J0WH2N54, 2017.
He, X., Chaney, N. W., Schleiss, M., and Sheffield, J.: Spatial downscaling
of precipitation using adaptable random forests, Water Resour. Res., 52,
8217–8237, 2016.
Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., and Sanderson, B. M.: Selecting a climate model subset to optimise key ensemble properties, Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, 2018.
Hussain, M., Yusof, K. W., Mustafa, M. R. U., Mahmood, R., and Jia, S.:
Evaluation of CMIP5 models for projection of future precipitation change in
Bornean tropical rainforests, Theor. Appl. Climatol., 134, 423–440, https://doi.org/10.1007/s00704-017-2284-5, 2018.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and
Meyer, L. A.,
IPCC, Geneva, Switzerland, 1–169, 2014.
Jena, P., Azad, S., and Rajeevan, M. N.: Statistical selection of the
optimum models in the CMIP5 dataset for climate change projections of Indian
monsoon rainfall, Climate, 3, 858–875, 2015.
Jiang, Z., Li, W., Xu, J., and Li, L.: Extreme precipitation indices over
China in CMIP5 models. Part I: Model evaluation, J. Climate, 28, 8603–8619,
2015.
Johnson, F. and Sharma, A.: Measurement of GCM skill in predicting
variables relevant for hydroclimatological assessments, J. Climate, 22,
4373–4382, 2009.
Johnson, F. and Sharma, A.: A nesting model for bias correction of
variability at multiple time scales in general circulation model
precipitation simulations, Water Resour. Res., 48, W01504, https://doi.org/10.1029/2011WR010464, 2012.
Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., and Son, M.:
Performance Assessment of General Circulation Model in Simulating Daily
Precipitation and Temperature Using Multiple Gridded Datasets, Water, 10,
1793, https://doi.org/10.3390/w10121793 2018a.
Khan, N., Shahid, S., Ismail, T. B., and Wang, X.-J.: Spatial distribution
of unidirectional trends in temperature and temperature extremes in
Pakistan, Theor. Appl. Climatol., 136, 899–913, https://doi.org/10.1007/s00704-018-2520-7, 2018b.
Kim, J., Ivanov, V. Y., and Fatichi, S.: Climate change and uncertainty
assessment over a hydroclimatic transect of Michigan, Stoch. Environ. Res.
Risk Assess., 30, 923–944, 2015.
Kishore, P., Jyothi, S., Basha, G., Rao, S. V. B., Rajeevan, M., Velicogna,
I., and Sutterley, T. C.: Precipitation climatology over India: validation
with observations and reanalysis datasets and spatial trends, Clim. Dynam.,
46, 541–556, https://doi.org/10.1007/s00382-015-2597-y, 2015.
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.:
Challenges in combining projections from multiple climate models, J. Climate,
23, 2739–2758, 2010.
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy:
Generation CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199,
2013.
Koch, J., Demirel, M. C., and Stisen, S.: The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models, Geosci. Model Dev., 11, 1873–1886, https://doi.org/10.5194/gmd-11-1873-2018, 2018.
Krishnamurti, T., Kishtawal, C., LaRow, T. E., Bachiochi, D. R., Zhang, Z.,
Williford, C. E., Gadgil, S., and Surendran, S.: Improved weather and
seasonal climate forecasts from multimodel superensemble, Science, 285,
1548–1550, 1999.
Krishnamurti, T. N., Kishtawal, C., Zhang, Z., LaRow, T., Bachiochi, D.,
Williford, E., Gadgil, S., and Surendran, S.: Multimodel ensemble forecasts
for weather and seasonal climate, J. Climate, 13, 4196–4216, 2000.
Kusunoki, S. and Arakawa, O.: Are CMIP5 Models Better than CMIP3 Models in
Simulating Precipitation over East Asia?, J. Climate, 28, 5601–5621, https://doi.org/10.1175/JCLI-D-14-00585.1, 2015.
Latif, M., Hannachi, A., and Syed, F.: Analysis of rainfall trends over
Indo-Pakistan summer monsoon and related dynamics based on CMIP5 climate
model simulations, Int. J. Climatol., 38, e577–e595, 2018.
Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B., Wester, P., and
Immerzeel, W. W.: Selecting representative climate models for climate change
impact studies: an advanced envelope-based selection approach, Int. J.
Climatol., 36, 3988–4005, 2016.
Mahmood, R., Jia, S., Tripathi, N. K., and Shrestha, S.: Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin, Atmosphere, 9, 160, 2018.
McMahon, T. A., Peel, M. C., and Karoly, D. J.: Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation, Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, 2015.
Mendlik, T. and Gobiet, A.: Selecting climate simulations for impact
studies based on multivariate patterns of climate change, Clim. Change, 135,
381–393, https://doi.org/10.1007/s10584-015-1582-0, 2016.
Miao, C., Duan, Q., Yang, L., and Borthwick, A. G.: On the applicability of
temperature and precipitation data from CMIP3 for China, PLoS One, 7,
e44659, https://doi.org/10.1371/journal.pone.0044659, 2012.
Min, S.-K. and Hense, A.: A Bayesian approach to climate model evaluation
and multi-model averaging with an application to global mean surface
temperatures from IPCC AR4 coupled climate models, Geophys. Res. Lett., 33, L08708, https://doi.org/10.1029/2006GL025779, 2006.
Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J.,
Collins, M., and Stainforth, D. A.: Quantification of modelling
uncertainties in a large ensemble of climate change simulations, Nature,
430, 768–772, https://doi.org/10.1038/nature02771, 2004.
Noor, M., Ismail, T. B., Shahid, S., Ahmed, K., Chung, E.-S., and Nawaz, N.:
Selection of CMIP5 multi-model ensemble for the projection of spatial and
temporal variability of rainfall in peninsular Malaysia, Theor. Appl.
Climatol., 138, 999–1012, https://doi.org/10.1007/s00704-019-02874-0, 2019.
Nowosad, J. and Stepinski, T. F.: Spatial association between
regionalizations using the information-theoretical V-measure, Int. J. Geogr. Inf. Sci., 32, 2386–2401, 2018.
Oh, S.-G. and Suh, M.-S.: Comparison of projection skills of deterministic
ensemble methods using pseudo-simulation data generated from multivariate
Gaussian distribution, Theor. Appl. Climatol., 129, 243–262, 2017.
Pavan, V. and Doblas-Reyes, F.: Multi-model seasonal hindcasts over the
Euro-Atlantic: skill scores and dynamic features, Clim. Dynam., 16, 611–625,
2000.
Pearson, K.: Early statistical papers, Cambridge University Press, Cambridge, 1–40, 1948.
Perkins-Kirkpatrick, S. E. and Gibson, P. B.: Changes in regional heatwave
characteristics as a function of increasing global temperature, Sci.
Rep. UK, 7, 12256, https://doi.org/10.1038/s41598-017-12520-2, 2017.
Perkins, S., Pitman, A., Holbrook, N., and McAneney, J.: Evaluation of the
AR4 climate models' simulated daily maximum temperature, minimum
temperature, and precipitation over Australia using probability density
functions, J. Climate, 20, 4356–4376, 2007.
Pocernich, M. M.: The verification package, available at:
https://cran.r-project.org/ (last access: 15 September 2018), 2006.
Pour, S. H., Shahid, S., Chung, E.-S., and Wang, X.-J.: Model output
statistics downscaling using support vector machine for the projection of
spatial and temporal changes in rainfall of Bangladesh, Atmos. Res., 213,
149–162, https://doi.org/10.1016/j.atmosres.2018.06.006, 2018.
Prasanna, V.: Regional climate change scenarios over South Asia in the CMIP5
coupled climate model simulations, Meteorol. Atmos. Phys., 127, 561–578,
2015.
Raäisaänen, J.: How reliable are climate models?, Tellus A, 59, 2–29, 2007.
Raju, K. S., Sonali, P., and Kumar, D. N.: Ranking of CMIP5-based global
climate models for India using compromise programming, Theor. Appl.
Climatol., 128, 563–574, 2017.
Rees, W.: Comparing the spatial content of thematic maps, Int. J. Remote
Sens., 29, 3833–3844, 2008.
Rehman, N., Adnan, M., and Ali, S.: Assessment of CMIP5 climate models over
South Asia and climate change projections over Pakistan under representative
concentration pathways, Int. J. Global Warm., 16,
381–415, 2018.
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78–97, 2008.
Ruane, A. C. and McDermid, S. P.: Selection of a representative subset of
global climate models that captures the profile of regional changes for
integrated climate impacts assessment, Earth Perspectives, 4, 1, https://doi.org/10.1186/s40322-017-0036-4, 2017.
Sa'adi, Z., Shahid, S., Chung, E.-S., and bin Ismail, T.: Projection of
spatial and temporal changes of rainfall in Sarawak of Borneo Island using
statistical downscaling of CMIP5 models, Atmos. Res., 197, 446–460, 2017.
Sachindra, D., Huang, F., Barton, A., and Perera, B.: Statistical
downscaling of general circulation model outputs to precipitation – part 2:
bias-correction and future projections, Int. J. Climatol., 34, 3282–3303,
2014.
Salman, S. A., Shahid, S., Ismail, T., Ahmed, K., and Wang, X.-J.: Selection
of climate models for projection of spatiotemporal changes in temperature of
Iraq with uncertainties, Atmos. Res., 213, 509–522,
https://doi.org/10.1016/j.atmosres.2018.07.008, 2018a.
Salman, S. A., Shahid, S., Ismail, T., Al-Abadi, A. M., Wang, X.-J., and
Chung, E.-S.: Selection of gridded precipitation data for Iraq using
compromise programming, Measurement, 132, 87–98, 2018b.
Sansom, P. G., Stephenson, D. B., Ferro, C. A., Zappa, G., and Shaffrey, L.:
Simple uncertainty frameworks for selecting weighting schemes and
interpreting multimodel ensemble climate change experiments, J. Climate, 26,
4017–4037, 2013.
Sarthi, P. P., Kumar, P., and Ghosh, S.: Possible future rainfall over
Gangetic Plains (GP), India, in multi-model simulations of CMIP3 and CMIP5,
Theor. Appl. Climatol., 124, 691–701, https://doi.org/10.1007/s00704-015-1447-5, 2016.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and
Rudolf, B.: GPCC's new land surface precipitation climatology based on
quality-controlled in situ data and its role in quantifying the global water
cycle, Theor. Appl. Climatol., 115, 15–40, https://doi.org/10.1007/s00704-013-0860-x, 2013.
Sheffield, J. and Wood, E. F.: Projected changes in drought occurrence
under future global warming from multi-model, multi-scenario, IPCC AR4
simulations, Clim. Dynam., 31, 79–105, https://doi.org/10.1007/s00382-007-0340-z, 2008.
Sheikh, M. M.: Drought management and prevention in Pakistan, COMSATS 1st
meeting on water resources in the south: present scenario and future
prospects, Islamabad, 117–131, 2001.
Shiru, M. S., Shahid, S., Alias, N., and Chung, E.-S.: Trend Analysis of
Droughts during Crop Growing Seasons of Nigeria, Sustainability, 10, 871,
2018.
Shukla, J., DelSole, T., Fennessy, M., Kinter, J., and Paolino, D.: Climate
model fidelity and projections of climate change, Geophys. Res. Lett., 33, L07702, https://doi.org/10.1029/2005GL025579, 2006.
Signorell, A.: DescTools: Tools for descriptive statistics, R package
version 0.99, 18, 2016.
Smith, I. and Chandler, E.: Refining rainfall projections for the Murray
Darling Basin of south-east Australia – the effect of sampling model results
based on performance, Clim. Change, 102, 377–393, 2010.
Smith, J. B., Hulme, M., Jaagus, J., Keevallik, S., Mekonnen, A., and
Hailemariam, K.: Climate change scenarios, UNEP Handbook on Methods for
Climate Change Impact Assessment and Adaptation Studies, UNEP, the Netherlands, 2, 3–1, 1998.
Sohoulande Djebou, D. and Singh, V.: Impact of climate change on the
hydrologic cycle and implications for society, Environ. Soc. Psychol., 1, 9–16,
2015.
Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J.: World
drought frequency, duration, and severity for 1951–2010, Int. J. Climatol.,
34, 2792–2804, https://doi.org/10.1002/joc.3875, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O.: Quantifying
uncertainty in projections of regional climate change: A Bayesian approach
to the analysis of multimodel ensembles, J. Climate, 18, 1524–1540, 2005.
Thober, S. and Samaniego, L.: Robust ensemble selection by multivariate
evaluation of extreme precipitation and temperature characteristics, J. Geophys. Res.-Atmos., 119, 594–613, 2014.
Wang, B., Zheng, L., Liu, D. L., Ji, F., Clark, A., and Yu, Q.: Using
multi-model ensembles of CMIP5 global climate models to reproduce observed
monthly rainfall and temperature with machine learning methods in Australia,
Int. J. Climatol., 38, 4891–4902, 2018.
Wang, Y., Shi, L., Zanobetti, A., and Schwartz, J. D.: Estimating and
projecting the effect of cold waves on mortality in 209 US cities,
Environ. Int., 94, 141–149, 2016.
Weigel, A. P., Knutti, R., Liniger, M. A., and Appenzeller, C.: Risks of
model weighting in multimodel climate projections, J. Climate, 23, 4175–4191,
2010.
Willmott, C. J.: On the validation of models, Phys. Geogr., 2,
184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981.
Willmott, C. J.: Some comments on the evaluation of model performance, B. Am. Meteorol. Soc., 63, 1309–1313, 1982.
Wu, C., Huang, G., Yu, H., Chen, Z., and Ma, J.: Impact of Climate Change on
Reservoir Flood Control in the Upstream Area of the Beijiang River Basin,
South China, J. Hydrometeorol., 15, 2203–2218, https://doi.org/10.1175/jhm-d-13-0181.1,
2014.
Wu, Z., Chen, X., Lu, G., Xiao, H., He, H., and Zhang, J.: Regional response
of runoff in CMIP5 multi-model climate projections of Jiangsu Province,
China, Stoch. Environ. Res. Risk Assess., 31, 2627–2643, 2016.
Xuan, W., Ma, C., Kang, L., Gu, H., Pan, S., and Xu, Y.-P.: Evaluating
historical simulations of CMIP5 GCMs for key climatic variables in Zhejiang
Province, China, Theor. Appl. Climatol., 128, 207–222, https://doi.org/10.1007/s00704-015-1704-7, 2017.
You, Q., Jiang, Z., Wang, D., Pepin, N., and Kang, S.: Simulation of
temperature extremes in the Tibetan Plateau from CMIP5 models and comparison
with gridded observations, Clim. Dynam., 51, 355–369, 2018.
Zawadzka, J., Mayr, T., Bellamy, P., and Corstanje, R.: Comparing
physiographic maps with different categorisations, Geomorphology, 231,
94–100, 2015.