Ball, J., Babister, M., Nathan, R., Weeks, W., Weinmann, E., Retallick, M.,
and Testoni, I.: Australian Rainfall and Runoff: A Guide to Flood
Estimation, ©Commonwealth of Australia (Geoscience Australia),
available at: http://book.arr.org.au.s3-website-ap-southeast-2.amazonaws.com/ (last access: 25 October 2019), 2016.

Bárdossy, A. and Pegram, G. G. S.: Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299–2314,
https://doi.org/10.5194/hess-13-2299-2009, 2009.

Baxevani, A. and Lennartsson, J.: A spatiotemporal precipitation generator
based on a censored latent Gaussian field, Water Resour. Res., 51,
4338–4358, https://doi.org/10.1002/2014WR016455, 2015.

Bennett, B., Lambert, M., Thyer, M., Bates, B. C., and Leonard, M.: Estimating Extreme Spatial Rainfall Intensities, J. Hydrol. Eng., 21, 04015074, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001316, 2016a.

Bennett, B., Thyer, M., Leonard, M., Lambert, M., and Bates, B.: A
comprehensive and systematic evaluation framework for a parsimonious daily
rainfall field model, J. Hydrol., 556, 1123–1138, https://doi.org/10.1016/j.jhydrol.2016.12.043, 2016b.

Bernard, M. M.: Formulas for rainfall intensities of long duration, T. Am. Soc. Civ. Eng., 96, 592–606, 1932.

Blanchet, J. and Creutin, J.-D.: Co-Occurrence of Extreme Daily Rainfall in
the French Mediterranean Region, Water Resour. Res., 53, 9330–9349,
https://doi.org/10.1002/2017wr020717, 2017.

Boughton, W., and Droop, O.: Continuous simulation for design flood
estimation – a review, Environ. Model. Softw., 18, 309–318,
https://doi.org/10.1016/S1364-8152(03)00004-5, 2003.

Boyd, M. J., Rigby, E. H., and VanDrie, R.: WBNM – a computer software package for flood hydrograph studies, Environm. Softw., 11, 167–172,
https://doi.org/10.1016/S0266-9838(96)00042-1, 1996.

Cameron, D. S., Beven, K. J., Tawn, J., Blazkova, S., and Naden, P.: Flood
frequency estimation by continuous simulation for a gauged upland catchment
(with uncertainty), J. Hydrol., 219, 169–187, https://doi.org/10.1016/S0022-1694(99)00057-8, 1999.

Carreau, J., Neppel, L., Arnaud, P., and Cantet, P.: Extreme Rainfall Analysis at Ungaug ed Sites in the South of France: Comparison of Three Approaches, Jour nal de la Société Française de Statistique, 154, 119–138, 2013.

Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, McGraw-Hill, New York, 1988.

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in:
Springer Series in Statistics, Springer, London, 2001.

Coles, S., Heffernan, J., and Tawn, J.: Dependence Measures for Extreme Value Analyses, Extremes, 2, 339–365, https://doi.org/10.1023/a:1009963131610, 1999.

Davison, A. C. and Smith, R. L.: Models for exceedances over high thresholds, J. Roy. Stat. Soc. B, 52, 393–442, 1990.

Davison, A. C., Padoan, S. A., and Ribatet, M.: Statistical Modeling of Spatial Extremes, Stat. Sci., 27, 161–186, https://doi.org/10.1214/11-STS376, 2012.

de Haan, L.: A Spectral Representation for Max-stable Processes, Ann. Probabil., 12, 1194–1204, 1984.

Demarta, S. and McNeil, A. J.: The t Copula and Related Copulas, International Statistical Review/Revue Internationale de Statistique, 73,
111–129, 2005.

Dombry, C., Engelke, S., and Oesting, M.: Exact simulation of max-stable
processes, Biometrika, 103, 303–317, 2016.

Durocher, M., Chebana, F., and Ouarda, T. B. M. J.: On the prediction of
extreme flood quantiles at ungauged locations with spatial copula, J. Hydrol., 533, 523-532, https://doi.org/10.1016/j.jhydrol.2015.12.029, 2016.

Favre, A. C., Adlouni, S. E., Perreault, L., Thiémonge, N., and Bobée, B.: Multivariate hydrological frequency analysis using copulas,
Water Resour. Res., 40, W01101, https://doi.org/10.1029/2003WR002456, 2004.

Gupta, A. S. and Tarboton, D. G.: A tool for downscaling weather data from
large-grid reanalysis products to finer spatial scales for distributed
hydrological applications, Environ. Model. Softw., 84, 50-69,
https://doi.org/10.1016/j.envsoft.2016.06.014, 2016.

He, Y., Bárdossy, A., and Zehe, E.: A review of regionalisation for continuous streamflow simulation, Hydrol. Earth Syst. Sci., 15, 3539–3553, https://doi.org/10.5194/hess-15-3539-2011, 2011.

Hegnauer, M., Beersma, J., Van den Boogaard, H., Buishand, T., and Passchier, R.: Generator of Rainfall and Discharge Extremes (GRADE) for the Rhine and Meuse basins, Final report of GRADE 2.0, Document extern project, available at: http://publications.deltares.nl/1209424_004_0018.pdf (last access: 25 October 2019), 2014.

Hosking, J. R. M. and Wallis, J. R.: Regional Frequency Analysis – An Approach Based on L-Moments, Cambridge University Press, Cambridge, UK, 1997.

Hüsler, J. and Reiss, R.-D.: Maxima of normal random vectors: Between
independence and complete dependence, Stat. Probabil. Lett., 7, 283–286, https://doi.org/10.1016/0167-7152(89)90106-5, 1989.

Kao, S.-C. and Govindaraju, R. S.: Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas, Water Resour. Res., 44, W02415, https://doi.org/10.1029/2007WR006261, 2008.

Kleiber, W., Katz, R. W., and Rajagopalan, B.: Daily spatiotemporal
precipitation simulation using latent and transformed Gaussian processes,
Water Resour. Res., 48, W01523, https://doi.org/10.1029/2011WR011105, 2012.

Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework
for studying rainfall intensity-duration-frequency relationships, J. Hydrol., 206, 118–135, https://doi.org/10.1016/S0022-1694(98)00097-3, 1998.

Kuichling, E.: The relation between the rainfall and the discharge of sewers
in populous districts, T. Am. Soc. Civ. Eng., 20, 1–56, 1889.

Laurenson, E. M. and Mein, R. G.: RORB Version 4 Runoff Routing Program User Manual, Monash University Department of Civil Engineering, Clayton, Victoria, 1990.

Le, P. D., Davison, A. C., Engelke, S., Leonard, M., and Westra, S.: Dependence properties of spatial rainfall extremes and areal reduction
factors, J. Hydrol., 565, 711–719, https://doi.org/10.1016/j.jhydrol.2018.08.061, 2018a.

Le, P. D., Leonard, M., and Westra, S.: Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations, Water Resour. Res., 54, 2233–2248, https://doi.org/10.1002/2017WR022231, 2018b.

Le, P. D., Leonard, M., and Westra, S.: Spatially dependent flood probabilities to support the design of civil infrastructure systems – Data sets, https://doi.org/10.6084/m9.figshare.9917072.v1, 2019.

Ledford, A. W. and Tawn, J. A.: Statistics for Near Independence in Multivariate Extreme Values, Biometrika, 83, 169–187, 1996.

Leonard, M., Lambert, M. F., Metcalfe, A. V., and Cowpertwait, P. S. P.: A
space-time Neyman–Scott rainfall model with defined storm extent, Water
Resour. Res., 44, W09402, https://doi.org/10.1029/2007WR006110, 2008.

Leonard, M., Westra, S., Phatak, A., Lambert, M., v. d. Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, Wiley Interdisciplin. Rev.: Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.

Mulvaney, T. J.: On the use of self-registering rain and flood gauges in making observation of the relation of rainfall and floods discharges in a
given catchment, Proc. Civ. Eng. Ireland, 4, 18–31, 1851.

Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: A multi-criteria
leave-two-out cross-validation procedure for max-stable process selection,
Spat. Stat., 22, 107–128, https://doi.org/10.1016/j.spasta.2017.09.004, 2017.

Padoan, S. A., Ribatet, M., and Sisson, S. A.: Likelihood-Based Inference for Max-Stable Processes, J. Am. Stat. Assoc., 105, 263–277, https://doi.org/10.1198/jasa.2009.tm08577, 2010.

Pathiraja, S., Westra, S., and Sharma, A.: Why continuous simulation? The role of antecedent moisture in design flood estimation, Water Resour. Res., 48, W06534, https://doi.org/10.1029/2011WR010997, 2012.

Pickands, J.: Statistical Inference Using Extreme Order Statistics, Ann. Stat., 3, 119–131, https://doi.org/10.1214/aos/1176343003, 1975.

Rahman, A., Weinmann, P. E., Hoang, T. M. T., and Laurenson, E. M.: Monte
Carlo simulation of flood frequency curves from rainfall, J. Hydrol., 256, 196–210, https://doi.org/10.1016/S0022-1694(01)00533-9, 2002.

Rasmussen, P. F.: Multisite precipitation generation using a latent
autoregressive model, Water Resour. Res., 49, 1845–1857, https://doi.org/10.1002/wrcr.20164, 2013.

Renard, B. and Lang, M.: Use of a Gaussian copula for multivariate extreme
value analysis: Some case studies in hydrology, Adv. Water Resour., 30, 897–912, https://doi.org/10.1016/j.advwatres.2006.08.001, 2007.

Requena, A. I., Chebana, F., and Ouarda, T. B. M. J.: A functional framework
for flow-duration-curve and daily streamflow estimation at ungauged sites,
Adv. Water Resour., 113, 328–340, https://doi.org/10.1016/j.advwatres.2018.01.019, 2018.

Russell, B. T., Cooley, D. S., Porter, W. C., and Heald, C. L.: Modeling the
spatial behavior of the meteorological drivers' effects on extreme ozone,
Environmetrics, 27, 334–344, https://doi.org/10.1002/env.2406, 2016.

Schlather, M.: Models for Stationary Max-Stable Random Fields, Extremes, 5,
33–44, https://doi.org/10.1023/A:1020977924878, 2002.

Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., and Rahimi, M.: Managing the
Risks of Extreme Events and Disasters to Advance Climate Change Adaptation:
Changes in Climate Extremes and their Impacts on the Natural Physical
Environment, Cambridge University Press, Cambridge, UK, 109–230, 2012.

SKM: Nambucca Heads Flood Study, available at: http://www.nambucca.nsw.gov.au/cp_content/resources/16152_2011__Nambucca_Heads_Flood_Study_Final_Draft_Chapter_6a.pdf
(last access: 25 October 2019), 2011.

Stedinger, J., Vogel, R., and Foufoula-Georgiou, E.: Frequency Analysis of
Extreme Events, in: Handbook of Hydrology, edited by: Maidment, D. R.,
McGraw-Hill, New York, 18.11–18.66, 1993.

Stephenson, A. G., Lehmann, E. A., and Phatak, A.: A max-stable process model for rainfall extremes at different accumulation durations, Weather Clim. Extrem., 13, 44–53, https://doi.org/10.1016/j.wace.2016.07.002, 2016.

Thibaud, E., Mutzner, R., and Davison, A. C.: Threshold modeling of extreme
spatial rainfall, Water Resour. Res., 49, 4633–4644, https://doi.org/10.1002/wrcr.20329, 2013.

Wadsworth, J. L. and Tawn, J. A.: Dependence modelling for spatial extremes, Biometrika, 99, 253–272, https://doi.org/10.1093/biomet/asr080, 2012.

Wang, Q. J.: A Bayesian Joint Probability Approach for flood record
augmentation, Water Resour. Res., 37, 1707–1712, https://doi.org/10.1029/2000WR900401,
2001.

Wang, Q. J., Robertson, D. E., and Chiew, F. H. S.: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at
multiple sites, Water Resour. Res., 45, W05407, https://doi.org/10.1029/2008WR007355, 2009.

Wang, X., Gebremichael, M., and Yan, J.: Weighted likelihood copula modeling
of extreme rainfall events in Connecticut, J. Hydrol., 390, 108–115, https://doi.org/10.1016/j.jhydrol.2010.06.039, 2010.

Westra, S. and Sisson, S. A.: Detection of non-stationarity in precipitation extremes using a max-stable process model, J. Hydrol., 406, 119–128, https://doi.org/10.1016/j.jhydrol.2011.06.014, 2011.

WMAWater: Review of Bellinger, Kalang and Nambucca River Catchments Hydrology, Bellingen Shire Council, Nambucca Shire Council, New South Wales
Government, 2011.

Zhang, L. and Singh, V. P.: Gumbel 2013; Hougaard Copula for Trivariate Rainfall Frequency Analysis, J. Hydrol. Eng., 12, 409–419, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(409), 2007.

Zheng, F., Westra, S., and Leonard, M.: Opposing local precipitation extremes, Nat. Clim. Change, 5, 389–390, https://doi.org/10.1038/nclimate2579, 2015.

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.