Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
HESS | Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 549-556, 2019
https://doi.org/10.5194/hess-23-549-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 549-556, 2019
https://doi.org/10.5194/hess-23-549-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Jan 2019

Research article | 30 Jan 2019

Emergent stationarity in Yellow River sediment transport and the underlying shift of dominance: from streamflow to vegetation

Sheng Ye et al.
Viewed  
Total article views: 834 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
666 158 10 834 18 15 17
  • HTML: 666
  • PDF: 158
  • XML: 10
  • Total: 834
  • Supplement: 18
  • BibTeX: 15
  • EndNote: 17
Views and downloads (calculated since 10 Jul 2018)
Cumulative views and downloads (calculated since 10 Jul 2018)
Viewed (geographical distribution)  
Total article views: 635 (including HTML, PDF, and XML) Thereof 627 with geography defined and 8 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 23 Apr 2019
Publications Copernicus
Download
Short summary
Our study shows that there is declining coupling between sediment concentration and discharge from daily to annual scales for gauges across the Yellow River basin (YRB). Not only the coupling, but also the magnitude of sediment response to discharge variation decreases with long-term mean discharge. This emergent stationarity can be related to sediment retardation by vegetation, suggesting the shift of dominance from water to vegetation as mean annual discharge increases.
Our study shows that there is declining coupling between sediment concentration and discharge...
Citation