Bailey, R. T., Morway, E. D., Niswonger, R. G., and Gates, T. K.: Modeling
variably saturated multispecies reactive groundwater solute transport with
MODFLOW-UZF and RT3D, Groundwater, 51, 752–761,
https://doi.org/10.1111/j.1745-6584.2012.01009.x, 2013.

Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative
numerical solution for the unsaturated flow equation, Water Resour. Res.,
26, 1483–1496, https://doi.org/10.1029/WR026i007p01483, 1990.

Crevoisier, D., Chanzy, A., and Voltz, M.: Evaluation of the Ross fast
solution of Richards' equation in unfavourable conditions for standard
finite element methods, Adv. Water Resour., 32, 936–947,
https://doi.org/10.1016/j.advwatres.2009.03.008, 2009.

Dettmann, U. and Bechtold, M.: One-dimensional expression to calculate
specific yield for shallow groundwater systems with microrelief, Hydrol.
Process., 30, 334–340, https://doi.org/10.1002/hyp.10637, 2016.

Diersch, H. J. G. and Perrochet, P.: On the primary variable switching
technique for simulating unsaturated-saturated flows, Adv. Water Resour.,
23, 271–301, https://doi.org/10.1016/S0309-1708(98)00057-8, 1999.

Downer, C. W. and Ogden, F. L.: Appropriate vertical discretization of
Richards' equation for two-dimensional watershed-scale modelling, Hydrol.
Process., 18, 1–22, https://doi.org/10.1002/hyp.1306, 2004.

Edwards, M. G.: Elimination of Adaptive Grid Interface Errors in the
Discrete Cell Centered Pressure Equation, J. Comput. Phys., 126, 356–372,
https://doi.org/10.1006/jcph.1996.0143, 1996.

Forsyth, P. A., Wu, Y. S., and Pruess, K.: Robust numerical methods for
saturated-unsaturated flow with dry initial conditions in heterogeneous
media, Adv. Water Resour., 18, 25–38,
https://doi.org/10.1016/0309-1708(95)00020-J, 1995.

Funaro, D., Quarteroni, A., and Zanolli, P.: An iterative procedure with
interface relaxation for domain decomposition methods, Siam J.
Numer. Anal., 25, 1213–1236, https://doi.org/10.1137/0725069, 1988.

Grygoruk, M., Batelaan, O., Mirosław-Świltek, D., Szatyłowicz, J.,
and Okruszko, T.: Evapotranspiration of bush encroachments on a temperate
mire meadow – A nonlinear function of landscape composition and groundwater
flow, Ecol. Eng., 73, 598–609,
https://doi.org/10.1016/j.ecoleng.2014.09.041, 2014.

Gunduz, O. and Aral, M. M.: River networks and groundwater flow: A
simultaneous solution of a coupled system, J. Hydrol., 301, 216–234,
https://doi.org/10.1016/j.jhydrol.2004.06.034, 2005.

Hao, X., Zhang, R., and Kravchenko, A.: A mass-conservative switching method for
simulating saturated-unsaturated flow, J. Hydrol., 301, 254–265,
https://doi.org/10.1016/j.jhydrol.2005.01.019, 2005.

Harbaugh, A. W.: MODFLOW-2005, the U.S. Geological Survey modular
ground-water model: The ground-water flow process, US Department of the
Interior, US Geological Survey Reston, VA, USA, 2005.

Hills, R. G., Porro, I., Hudson, D. B., and Wierenga, P. J.: Modeling
one-dimensional infiltration into very dry soils: 1. Model development and
evaluation, Water Resour. Res., 25, 1259–1269,
https://doi.org/10.1029/WR025i006p01259, 1989.

Krabbenhøft, K.: An alternative to primary variable switching in
saturated-unsaturated flow computations, Adv. Water Resour., 30, 483–492,
https://doi.org/10.1016/j.advwatres.2006.04.009, 2007.

Kumar, M., Duffy, C. J., and Salvage, K. M.: A Second-Order Accurate, Finite
Volume-Based, Integrated Hydrologic Modeling (FIHM) Framework for Simulation
of Surface and Subsurface Flow, Vadose Zone J., 8, 873–890,
https://doi.org/10.2136/vzj2009.0014, 2009.

Kuznetsov, M., Yakirevich, A., Pachepsky, Y. A., Sorek, S., and Weisbrod, N.:
Quasi 3D modeling of water flow in vadose zone and groundwater, J. Hydrol.,
450–451, 140–149, https://doi.org/10.1016/j.jhydrol.2012.05.025, 2012.

Langevin, C. D., Hughes, J. D., Banta, E. R., Provost, A. M., Niswonger, R.
G., and Panday, S.: MODFLOW 6 Groundwater Flow (GWF) Model Beta version
0.9.03, U.S. Geol. Surv. Provisional Softw. Release,
https://doi.org/10.5066/F76Q1VQV, 2017.

Leake, S. A. and Claar, D. V: Procedures and computer programs for telescopic
mesh refinement using MODFLOW, Citeseer, available at:
http://az.water.usgs.gov/MODTMR/tmr.html (last access:
29 January 2019), 1999.

Lin, L., Yang, J.-Z., Zhang, B., and Zhu, Y.: A simplified numerical model of
3-D groundwater and solute transport at large scale area, J. Hydrodyn. Ser.
B, 22, 319–328, https://doi.org/10.1016/S1001-6058(09)60061-5, 2010.

Liu, Z., Zha, Y., Yang, W., Kuo, Y., and Yang, J.: Large-Scale Modeling of
Unsaturated Flow by a Stochastic Perturbation Approach, Vadose Zone J., 15,
https://doi.org/10.2136/vzj2015.07.0103, 2016.

Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., and Barlow,
P. M.: GSFLOW – Coupled Ground-Water and Surface-Water Flow Model Based on
the Integration of the Precipitation-Runoff Modeling System (PRMS) and the
Modular Ground-Water Flow Model (MODFLOW-2005), Geological Survey (US),
available at: https://pubs.usgs.gov/tm/tm6d1/ (last access:
29 January 2019), 2008.

Maxwell, R. M. and Miller, N. L.: Development of a coupled land surface and
groundwater model, J. Hydrometeorol., 6, 233–247,
https://doi.org/10.1175/JHM422.1, 2005.

McDonald, M. G. and Harbaugh, A. W.: A modular three-dimensional
finite-difference ground-water flow model, available at:
http://pubs.er.usgs.gov/publication/twri06A1 (last access:
29 January 2019), 1988.

Mehl, S. and Hill, M. C.: Three-dimensional local grid refinement for
block-centered finite-difference groundwater models using iteratively
coupled shared nodes: a new method of interpolation and analysis of errors,
Adv. Water Resour., 27, 899–912,
https://doi.org/10.1016/j.advwatres.2004.06.004, 2004.

Mehl, S. and Hill, M. C.: MODFLOW–LGR – Documentation of ghost node local
grid refinement (LGR2) for multiple areas and the boundary flow and head
(BFH2) package, 2013th ed., available at: https://pubs.usgs.gov/tm/6a44
(last access: 29 January 2019), 2013.

Miller, C. T., Williams, G. A., Kelley, C. T., and Tocci, M. D.: Robust
solution of Richards' equation for nonuniform porous media, Water Resour.
Res., 34, 2599–2610, https://doi.org/10.1029/98WR01673, 1998.

Miller, C. T., Abhishek, C., and Farthing, M. W.: A spatially and temporally
adaptive solution of Richards' equation, Adv. Water Resour., 29, 525–545,
https://doi.org/10.1016/j.advwatres.2005.06.008, 2006.

Nachabe, M. H.: Analytical expressions for transient specific yield and
shallow water table drainage, Water Resour. Res., 38, 11-1–11-7,
https://doi.org/10.1029/2001WR001071, 2002.

Niswonger, R. G., Prudic, D. E., and Regan, S. R.: Documentation of the
Unsaturated-Zone Flow (UZF1) Package for Modeling Unsaturated Flow Between
the Land Surface and the Water Table with MODFLOW-2005, US Department of the
Interior, US Geological Survey, available at:
https://pubs.er.usgs.gov/publication/tm6A19 (last access:
29 January 2019), 2006.

Niswonger, R. G., Panday, S., and Ibaraki, M.: MODFLOW-NWT, a Newton
formulation for MODFLOW-2005, US Geol. Surv. Tech. Methods, 6, A37, available
from: https://pubs.usgs.gov/tm/tm6a37 (last access: 29 January 2019),
2011.

Panday, S. and Huyakorn, P. S.: A fully coupled physically-based
spatially-distributed model for evaluating surface/subsurface flow, Adv.
Water Resour., 27, 361–382,
https://doi.org/10.1016/j.advwatres.2004.02.016, 2004.

Panday, S., Langevin, C. D., Niswonger, R. G., Ibaraki, M., and Hughes, J.
D.: MODFLOW–USG version 1: An unstructured grid version of MODFLOW for
simulating groundwater flow and tightly coupled processes using a control
volume finite-difference formulation, US Geological Survey,
https://doi.org/10.3133/tm6A45, 2013.

Paulus, R., Dewals, B. J., Erpicum, S., Pirotton, M., and Archambeau, P.:
Innovative modelling of 3D unsaturated flow in porous media by coupling
independent models for vertical and lateral flows, J. Comput. Appl. Math.,
246, 38–51, https://doi.org/10.1016/j.cam.2012.07.032, 2013.

Prudic, D. E., Konikow, L. F., and Banta, E. R.: A New Streamflow-Routing
(SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000,
available at: http://pubs.er.usgs.gov/publication/ofr20041042 (last
access: 29 January 2019), 2004.

Richards, L. A.: Capillary conduction of liquids through porous mediums, J.
Appl. Phys., 1, 318–333, https://doi.org/10.1063/1.1745010, 1931.

Rybak, I., Magiera, J., Helmig, R., and Rohde, C.: Multirate time integration
for coupled saturated/unsaturated porous medium and free flow systems,
Comput. Geosci., 19, 299–309, https://doi.org/10.1007/s10596-015-9469-8,
2015.

Seo, H. S., Šimůnek, J., and Poeter, E. P.: Documentation of the
HYDRUS Package for MODFLOW-2000, the U.S. Geological Survey Modular
Ground-Water Model, GWMI 2007-01, Int. Ground Water Modeling Center, Colorado
School of Mines, Golden, CO, 96 pp., 2007.

Shen, C. and Phanikumar, M. S.: A process-based, distributed hydrologic
model based on a large-scale method for surface-subsurface coupling, Adv.
Water Resour., 33, 1524–1541,
https://doi.org/10.1016/j.advwatres.2010.09.002, 2010.

Šimůnek, J., Sejna, M., Saito, H., Sakai, M., and van Genuchten, M.
T.: The HYDRUS-1D software package for simulating the one-dimensional
movement of water, heat, and multiple solutes in variably-saturated media,
Version 4.08, 2009.

Šimůnek, J., Van Genuchten, M. T., and Šejna, M.: Recent
Developments and Applications of the HYDRUS Computer Software Packages,
Vadose Zone J., 15, https://doi.org/10.2136/vzj2016.04.0033, 2016.

Stoppelenburg, F. J., Kovar, K., Pastoors, M. J. H., and Tiktak, A.:
Modelling the interactions between transient saturated and unsaturated
groundwater flow. Off-line coupling of LGM and SWAP, RIVM Rep., 500026001,
70, 2005.

Thoms, R. B., Johnson, R. L., and Healy, R. W.: User's guide to the variably
saturated flow (VSF) process to MODFLOW, available at:
http://pubs.er.usgs.gov/publication/tm6A18 (last access:
29 January 2019), 2006.

Twarakavi, N. K. C., Šimůnek, J., and Seo, S.: Evaluating
Interactions between Groundwater and Vadose Zone Using the HYDRUS-Based Flow
Package for MODFLOW, Vadose Zone J., 7, 757–768, https://doi.org/10.2136/vzj2007.0082,
2008.

van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., and Kroes, J. G.:
Advances of Modeling Water Flow in Variably Saturated Soils with SWAP, Vadose
Zone J., 7, 640–653, https://doi.org/10.2136/vzj2007.0060, 2008.

van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.

Vogel, H.-J. and Ippisch, O.: Estimation of a Critical Spatial Discretization
Limit for Solving Richards' Equation at Large Scales, Vadose Zone J., 7,
112–114, https://doi.org/10.2136/vzj2006.0182, 2008.

Warrick, A. W.: Numerical approximations of darcian flow through unsaturated
soil, Water Resour. Res., 27, 1215–1222,
https://doi.org/10.1029/91WR00093, 1991.

Xie, Z., Di, Z., Luo, Z., and Ma, Q.: A Quasi-Three-Dimensional Variably
Saturated Groundwater Flow Model for Climate Modeling, J. Hydrometeorol.,
13, 27–46, https://doi.org/10.1175/JHM-D-10-05019.1, 2012.

Xu, X., Huang, G., Zhan, H., Qu, Z., and Huang, Q.: Integration of SWAP and
MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas,
J. Hydrol., 412–413, 170–181, https://doi.org/10.1016/j.jhydrol.2011.07.002,
2012.

Yakirevich, A., Borisov, V., and Sorek, S.: A quasi three-dimensional model
for flow and transport in unsaturated and saturated zones: 1. Implementation
of the quasi two-dimensional case, Adv. Water Resour., 21, 679–689,
https://doi.org/10.1016/S0309-1708(97)00031-6, 1998.

Zadeh, K. S.: A mass-conservative switching algorithm for modeling fluid flow
in variably saturated porous media, J. Comput. Phys, 230, 664–679,
https://doi.org/10.1016/j.jcp.2010.10.011, 2011.

Zeng, J., Zha, Y., Zhang, Y., Shi, L., Zhu, Y., and Yang, J.: On the
sub-model errors of a generalized one-way coupling scheme for linking models
at different scales, Adv. Water Resour., 109, 69–83,
https://doi.org/10.1016/j.advwatres.2017.09.005, 2017.

Zeng, J., Zha, Y., and Yang, J.: Switching the Richards' equation for
modeling soil water movement under unfavorable conditions, J. Hydrol., 563,
942–949, https://doi.org/10.1016/j.jhydrol.2018.06.069, 2018.

Zha, Y., Shi, L., Ye, M., and Yang, J.: A generalized Ross method for two-
and three-dimensional variably saturated flow, Adv. Water Resour., 54,
67–77, https://doi.org/10.1016/j.advwatres.2013.01.002, 2013a.

Zha, Y., Yang, J., Shi, L., and Song, X.: Simulating One-Dimensional
Unsaturated Flow in Heterogeneous Soils with Water Content-Based Richards
Equation, Vadose Zone J., 12, https://doi.org/10.2136/vzj2012.0109, 2013b.

Zha, Y., Yang, J., Yin, L., Zhang, Y., Zeng, W., and Shi, L.: A modified
Picard iteration scheme for overcoming numerical difficulties of simulating
infiltration into dry soil, J. Hydrol., 551, 56–69,
https://doi.org/10.1016/j.jhydrol.2017.05.053, 2017.

Zhu, Y., Shi, L., Lin, L., Yang, J., and Ye, M.: A fully coupled numerical
modeling for regional unsaturated-saturated water flow, J. Hydrol., 475,
188–203, https://doi.org/10.1016/j.jhydrol.2012.09.048, 2012.