Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM
precipitation to produce unbiased climate change scenarios over large areas
and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012. a, b

Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D.: Linear Programming and
Network Flows, 4th edn., John Wiley & Sons, 2009. a

Bürger, G., Schulla, J., and Werner, A. T.: Estimates of future flow,
including extremes, of the Columbia River headwaters, Water Resour. Res., 47,
W10520, https://doi.org/10.1029/2010WR009716, 2011. a

Cannon, A. J.: Multivariate Bias Correction of Climate Model Output: Matching
Marginal Distributions and Intervariable Dependence Structure, J. Climate, 29,
7045–7064, https://doi.org/10.1175/JCLI-D-15-0679.1, 2016. a

Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional
probability density function transform for climate model simulations of
multiple variables, Clim. Dynam, 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. a

Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding appropriate
bias correction methods in downscaling precipitation for hydrologic impact
studies over North America, Water Resour. Res., 49, 4187–4205,
https://doi.org/10.1002/wrcr.20331, 2013. a

Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On
the need for bias correction of regional climate change projections of
temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694,
2008. a

Dekens, L., Parey, S., Grandjacques, M., and Dacunha-Castelle, D.: Multivariate
distribution correction of climate model outputs: A generalization of
quantile mapping approaches, Environmetrics, 28, E2454,
https://doi.org/10.1002/env.2454, 2017. a

Déqué, M.: Frequency of precipitation and temperature extremes over
France in an anthropogenic scenario: Model results and statistical correction
according to observed values, Global Planet. Change, 57, 16–26,
https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007. a

Drótos, G., Bódai, T., and Tél, T.: Probabilistic concepts in a
changing climate: a snapshot attractor picture, J. Climate, 28, 3275–3288,
https://doi.org/10.1175/JCLI-D-14-00459.1, 2015. a, b

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam, 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013. a

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions
“Should we apply bias correction to global and regional climate model data?”,
Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012. a

Farchi, A., Bocquet, M., Roustan, Y., Mathieu, A., and Quérel, A.: Using
the Wasserstein distance to compare fields of pollutants: application to the
radionuclide atmospheric dispersion of the Fukushima-Daiichi accident, Tellus
B, 68, 31682, https://doi.org/10.3402/tellusb.v68.31682, 2016. a, b

Ferradans, S., Papadakis, N., Rabin, J., Peyré, G., and Aujol, J.-F.:
Regularized Discrete Optimal Transport, Springer Berlin
Heidelberg, Berlin, Heidelberg, 428–439, https://doi.org/10.1007/978-3-642-38267-3_36,
2013. a

Flamary, R. and Courty, N.: POT Python Optimal Transport library, 2017. a

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note:
Downscaling RCM precipitation to the station scale using statistical transformations
– a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a

Higham, N. J.: Computing a nearest symmetric positive semidefinite matrix,
Linear Algebra Appl., 103, 103–118,
https://doi.org/10.1016/0024-3795(88)90223-6, 1988. a

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,
S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S.,
Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R.,
Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg. Environ.
Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a

Knol, D. L. and ten Berge, J. M. F.: Least-squares approximation of an improper
correlation matrix by a proper one, Psychometrika, 54, 53–61,
https://doi.org/10.1007/BF02294448, 1989. a

Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly
precipitation and temperature fields from Intergovernmental Panel on Climate
Change AR4 models using equidistant quantile matching, J. Geophys. Res.-Atmos.,
115, D10101, https://doi.org/10.1029/2009JD012882, 2010. a

Lorenz, E. N.: Irregularity: a fundamental property of the atmosphere, Tellus
A, 36, 98–110, 1984. a, b, c, d

Lorenz, E. N.: Can chaos and intransitivity lead to interannual variability?,
Tellus A, 42, 378–389, 1990. a

Mao, G., Vogl, S., Laux, P., Wagner, S., and Kunstmann, H.: Stochastic bias
correction of dynamically downscaled precipitation fields for Germany through
Copula-based integration of gridded observation data, Hydrol. Earth Syst. Sci.,
19, 1787–1806, https://doi.org/10.5194/hess-19-1787-2015, 2015. a

Maraun, D.: Nonstationarities of regional climate model biases in European
seasonal mean temperature and precipitation sums, Geophys. Res. Lett., 39,
L06706, https://doi.org/10.1029/2012GL051210, 2012. a

Maraun, D.: Bias Correcting Climate Change Simulations – a Critical Review,
Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016. a

Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations
is misleading, Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, 2018. a

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez,
J., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns, L. O.:
Towards process-informed bias correction of climate change simulations,
Nat. Clim. Change, 7, 764–773, 2017. a, b, c, d

Marti, O., Braconnot, P., Dufresne, J.-L., Bellier, J., Benshila, R., Bony, S.,
Brockmann, P., Cadule, P., Caubel, A., Codron, F., de Noblet, N., Denvil, S.,
Fairhead, L., Fichefet, T., Foujols, M.-A., Friedlingstein, P., Goosse, H.,
Grandpeix, J.-Y., Guilyardi, E., Hourdin, F., Idelkadi, A., Kageyama, M.,
Krinner, G., Lévy, C., Madec, G., Mignot, J., Musat, I., Swingedouw, D.,
and Talandier, C.: Key features of the IPSL ocean atmosphere model and its
sensitivity to atmospheric resolution, Clim. Dynam, 34, 1–26,
https://doi.org/10.1007/s00382-009-0640-6, 2010. a

Mather, J. N.: Action minimizing invariant measures for positive definite
Lagrangian systems, Math. Z., 207, 169–207, https://doi.org/10.1007/BF02571383, 1991. a

Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling
approaches: Application to wind cumulative distribution functions, Geophys.
Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401, 2009. a, b

Muskulus, M. and Verduyn-Lunel, S.: Wasserstein distances in the analysis of
time series and dynamical systems, Physica D, 240, 45–58,
https://doi.org/10.1016/j.physd.2010.08.005, 2011. a

Nahar, J., Johnson, F., and Sharma, A.: Assessing the extent of non-stationary
biases in GCMs, J. Hydrol., 549, 148–162,
https://doi.org/10.1016/j.jhydrol.2017.03.045, 2017. a

Nahar, J., Johnson, F., and Sharma, A.: Addressing Spatial Dependence Bias in
Climate Model Simulations: An Independent Component Analysis Approach, Water
Resour. Res., 54, 827–841, https://doi.org/10.1002/2017WR021293, 2018. a

Panofsky, H. A. and Brier, G. W.: Some applications of statistics to
meteorology, Mineral Industries Extension Services, College of Mineral
Industries, Pennsylvania State University, 103 pp., 1958. a

Piani, C. and Haerter, J. O.: Two dimensional bias correction of temperature
and precipitation copulas in climate models, Geophys. Res. Lett.,
39, https://doi.org/10.1029/2012GL053839, 2012. a

Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and
Haerter, J.: Statistical bias correction of global simulated daily
precipitation and temperature for the application of hydrological models, J.
Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010. a

Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F.,
Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of
Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over
France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1,
2008. a

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J.,
Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate models
and their evaluation, in: Climate change 2007: The physical science basis.
Contribution of Working Group I to the Fourth Assessment Report of the IPCC
(FAR), Cambridge University Press, 589–662, 2007. a

Räty, O., Räisänen, J., Bosshard, T., and Donnelly, C.:
Intercomparison of Univariate and Joint Bias Correction Methods in Changing
Climate From a Hydrological Perspective, Climate, 6, 33
https://doi.org/10.3390/cli6020033, 2018. a

Robin, Y.: Ayga, Python and R bias correction library, available at:
https://github.com/yrobink/Ayga.git, last access: 29 January 2019. a

Robin, Y., Yiou, P., and Naveau, P.: Detecting changes in forced climate
attractors with Wasserstein distance, Nonlinear Proc. Geoph., 24, 393–405, 2017. a

Rubner, Y., Tomasi, C., and Guibas, L. J.: The Earth Mover's Distance as a
Metric for Image Retrieval, Int. J. Comput. Vis., 40, 99–121,
https://doi.org/10.1023/A:1026543900054, 2000. a

Santambrogio, F.: Optimal Transport for Applied Mathematicians, vol. 87,
Birkhäuser Basel, 2015. a, b

Shrestha, R. R., Schnorbus, M. A., Werner, A. T., and Zwiers, F. W.: Evaluating
Hydroclimatic Change Signals from Statistically and Dynamically Downscaled
GCMs and Hydrologic Models, J. Hydrometeorol., 15, 844–860,
https://doi.org/10.1175/JHM-D-13-030.1, 2014. a

Skamarock, W., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G.,
Huang, X., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version 3, in: NCAR Technical Note, NCAR/TN-475+STR,
https://doi.org/10.5065/D68S4MVH, 2008.
a

Strook, D. W.: Probability Theory, an Analytic View, J. Royal Stat. Soc. Series
A, 158, 356–357, https://doi.org/10.2307/2983317, 1995. a

Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué, M.,
Fernández, J., García-Díez, M., Goergen, K., Güttler, I.,
Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski, S., Mayer,
S., van Meijgaard, E., Nikulin, G., Patarčić, M., Scinocca, J.,
Sobolowski, S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer,
V., and Yiou, P.: The simulation of European heat waves from an ensemble of
regional climate models within the EURO-CORDEX project, Clim. Dynam, 41,
2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013. a

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010. a

Villani, C.: Optimal Transport: Old and New, in: Grundlehren
der mathematischen Wissenschaften, 1 edn., Springer Science & Business Media, 992 pp., 2008. a, b, c

von Storch, H.: On the Use of “Inflation” in Statistical Downscaling, J.
Climate, 12, 3505–3506, https://doi.org/10.1175/1520-0442(1999)012<3505:OTUOII>2.0.CO;2, 1999. a

Vrac, M.: Multivariate bias adjustment of high-dimensional climate simulations: the Rank
Resampling for Distributions and Dependences (R^{2}D^{2}) bias correction, Hydrol.
Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, 2018. a, b

Vrac, M. and Friederichs, P.: Multivariate–Intervariable, Spatial, and
Temporal–Bias Correction, J. Climate, 28, 218–237,
https://doi.org/10.1175/JCLI-D-14-00059.1, 2015. a

Wilcke, R. A. I., Mendlik, T., and Gobiet, A.: Multi-variable error correction
of regional climate models, Clim. Change, 120, 871–887,
https://doi.org/10.1007/s10584-013-0845-x, 2013. a

Wong, G., Maraun, D., Vrac, M., Widmann, M., Eden, J. M., and Kent, T.:
Stochastic Model Output Statistics for Bias Correcting and Downscaling
Precipitation Including Extremes, J. Climate, 27, 6940–6959,
https://doi.org/10.1175/JCLI-D-13-00604.1, 2014. a

Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
Implications of Dynamical and Statistical Approaches to Downscaling Climate
Model Outputs, Clim. Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004. a