Articles | Volume 23, issue 2
https://doi.org/10.5194/hess-23-773-2019
https://doi.org/10.5194/hess-23-773-2019
Research article
 | 
12 Feb 2019
Research article |  | 12 Feb 2019

Multivariate stochastic bias corrections with optimal transport

Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou

Related authors

Human influence on growing-period frosts like in early April 2021 in central France
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023,https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Is time a variable like the others in multivariate statistical downscaling and bias correction?
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021,https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Nonstationary extreme value analysis for event attribution combining climate models and observations
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020,https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020,https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Detecting changes in forced climate attractors with Wasserstein distance
Yoann Robin, Pascal Yiou, and Philippe Naveau
Nonlin. Processes Geophys., 24, 393–405, https://doi.org/10.5194/npg-24-393-2017,https://doi.org/10.5194/npg-24-393-2017, 2017
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Theory development
A hydrologist's guide to open science
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022,https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
From mythology to science: the development of scientific hydrological concepts in Greek antiquity and its relevance to modern hydrology
Demetris Koutsoyiannis and Nikos Mamassis
Hydrol. Earth Syst. Sci., 25, 2419–2444, https://doi.org/10.5194/hess-25-2419-2021,https://doi.org/10.5194/hess-25-2419-2021, 2021
Short summary
Comment on: “A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions” by Han and Tian (2020)
Richard D. Crago, Jozsef Szilagyi, and Russell Qualls
Hydrol. Earth Syst. Sci., 25, 63–68, https://doi.org/10.5194/hess-25-63-2021,https://doi.org/10.5194/hess-25-63-2021, 2021
Short summary
Global distribution of hydrologic controls on forest growth
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020,https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Inter-annual variability of the global terrestrial water cycle
Dongqin Yin and Michael L. Roderick
Hydrol. Earth Syst. Sci., 24, 381–396, https://doi.org/10.5194/hess-24-381-2020,https://doi.org/10.5194/hess-24-381-2020, 2020
Short summary

Cited articles

Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012. a, b
Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D.: Linear Programming and Network Flows, 4th edn., John Wiley & Sons, 2009. a
Bürger, G., Schulla, J., and Werner, A. T.: Estimates of future flow, including extremes, of the Columbia River headwaters, Water Resour. Res., 47, W10520, https://doi.org/10.1029/2010WR009716, 2011. a
Cannon, A. J.: Multivariate Bias Correction of Climate Model Output: Matching Marginal Distributions and Intervariable Dependence Structure, J. Climate, 29, 7045–7064, https://doi.org/10.1175/JCLI-D-15-0679.1, 2016. a
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam, 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. a
Download
Short summary
Bias correction methods are used to calibrate climate model outputs with respect to observations. In this article, a non-stationary, multivariate and stochastic bias correction method is developed based on optimal transport, accounting for inter-site and inter-variable correlations. Optimal transport allows us to construct a joint distribution that minimizes energy spent in bias correction. Our methodology is tested on precipitation and temperatures over 12 locations in southern France.