Allan, R. P. and Soden, B. J.: Atmospheric warming and the amplification of
precipitation extremes, Science, 321, 1481–1484, 2008. a
Ambika, A. K., Wardlow, B., and Mishra, V.: Remotely sensed high resolution
irrigated area mapping in India for 2000 to 2015, Scientific data, 3,
160118, https://doi.org/10.1038/sdata.2016.118, 2016. a, b
Bastiaanssen, W. G., Menenti, M., Feddes, R., and Holtslag, A.: A remote
sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,
J. Hydrol., 212, 198–212, 1998. a
Bauer-Marschallinger, B., Paulik, C., Hochstöger, S., Mistelbauer, T.,
Modanesi, S., Ciabatta, L., Massari, C., Brocca, L., and Wagner, W.: Soil
Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with
Temporal Filtering, Remote Sensing, 10, 1030, https://doi.org/10.3390/rs10071030,
2018. a
Bonfils, C. and Lobell, D.: Empirical evidence for a recent slowdown in
irrigation-induced cooling, P. Natl. Acad. Sci. USA,
104, 13582–13587, 2007. a, b
Bontemps, S., Defourny, P., Radoux, J., Van Bogaert, E., Lamarche, C., Achard,
F., Mayaux, P., Boettcher, M., Brockmann, C., Kirches, G., Bontemps, S., Defourny, P.,
Radoux, J., Van Bogaert, E., Lamarche, C., Achard, F., Mayaux, P., Boettcher, M.,
Brockmann, C., Kirches, G., Zulkhe, M., Kalogirou, V., Seifert, F. M., and Arino, O.: Consistent
global land cover maps for climate modelling communities: current
achievements of the ESA's land cover CCI, in: Proceedings of the ESA Living
Planet Symposium, Edimburgh, 9–13, 2013. a, b, c
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification,
GMAO Office Note No. 9 (Version 1.1), 73 pp., available at:
http://gmao.gsfc.nasa.gov/pubs/office_notes (last access:
29 October 2018), 2016. a, b
Boucher, O., Myhre, G., and Myhre, A.: Direct human influence of irrigation on
atmospheric water vapour and climate, Clim. Dynam., 22, 597–603, 2004. a
Brocca, L., Melone, F., Moramarco, T., Wagner, W., and Albergel, C.: Scaling
and filtering approaches for the use of satellite soil moisture observations,
in: Remote Sensing of Energy Fluxes and Soil Moisture Content, 415–430,
CRC Press, Boca Raton, 2013. a
Chan, S. K., Bindlish, R., O'Neill, P., Jackson, T., Njoku, E., Dunbar, S.,
Chaubell, J., Piepmeier, J., Yueh, S., Entekhabi, D., Colliander, A., Chen,
F., Cosh, M. H., Caldwell, T., Walker, J., Berg, A., McNairn, H., Thibeault,
M., Martínez-Fernández, J., Uldall, F., Seyfried, M., Bosch, D.,
Starks, P., Holifield Collins, C., Prueger, J., van der Velde, R., Asanuma,
J., Palecki, M., Small, E. E., Zreda, M., Calvet, J., Crow, W. T., and Kerr,
Y.: Development and
assessment of the SMAP enhanced passive soil moisture product, Remote Sens.
Environ., 204, 931–941, 2018. a
Chen, M., Shi, W., Xie, P., Silva, V., Kousky, V. E., Wayne Higgins, R., and
Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of
global daily precipitation, J. Geophys. Res.-Atmos.,
113, D04110, https://doi.org/10.1029/2007JD009132, 2008. a
Chew, C. and Small, E.: Soil moisture sensing using spaceborne GNSS
reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture,
Geophys. Res. Lett., 45, 4049–4057, https://doi.org/10.1029/2018GL077905, 2018. a
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B.,
Cosh, M. H., Dunbar, R. S., Dang, L., Pashaian, L., Asanuma, J., Aida, K.,
Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., Goodrich, D.,
al Jassar, H., Lopez-Baeza, E., Martínez-Fernández, J.,
González-Zamora, A., Livingston, S., McNairn, H., Pacheco, A., Moghaddam,
M., Montzka, C., Notarnicola, C., Niedrist, G., Pellarin, T., Prueger, J.,
Pulliainen, J., Rautiainen, K., Ramos, J., Seyfried, M., Starks, P., Su, Z.,
Zeng, Y., van der Velde, R., Thibeault, M., Dorigo, W., Vreugdenhil, M.,
Walker, J. P., Wu, X., Monerris, A., O'Neill, P. E., Entekhabi, D., Njoku, E.
G., and Yueh, S.: Validation of SMAP surface
soil moisture products with core validation sites, Remote Sens.
Environ., 191, 215–231, 2017. a
Daughtry, C., Ranson, K., and Biehl, L.: C-band backscattering from corn
canopies, Int. J. Remote Sens., 12, 1097–1109, 1991. a
Deines, J. M., Kendall, A. D., and Hyndman, D. W.: Annual Irrigation Dynamics
in the US Northern High Plains Derived from Landsat Satellite Data,
Geophys. Res. Lett., 44, 9350–9360, 2017. a, b, c
der Schalie, R., Kerr, Y., Wigneron, J., Rodríguez-Fernández, N.,
Al-Yaari, A., and Jeu, R.: Global SMOS Soil Moisture Retrievals from The Land
Parameter Retrieval Model, Int. J. Appl. Earth Obs., 45, 125–134,
https://doi.org/10.1016/j.jag.2015.08.005, 2016. a
Döll, P.: Impact of climate change and variability on irrigation
requirements: a global perspective, Climatic Change, 54, 269–293, 2002. a, b
Döll, P. and Siebert, S.: Global modeling of irrigation water requirements,
Water Resour. Res., 38, 8-1–8-10, https://doi.org/10.1029/2001WR000355, 2002. a
Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiova, A.,
Sanchis-Dufau, A., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M.:
Global automated quality control of in situ soil moisture data from the
International Soil Moisture Network, Vadose Zone J., 12, https://doi.org/10.2136/vzj2012.0097, 2013. a
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi,
M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D.,
Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C.,
van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA
CCI Soil Moisture for improved Earth system understanding: State-of-the art
and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017. a, b, c
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Tsang, L., and Van Zyl, J.: The soil moisture active
passive (SMAP) mission, P. IEEE, 98, 704–716, 2010. a, b, c
Escorihuela, M. J. and Quintana-Seguí, P.: Comparison of remote sensing
and simulated soil moisture datasets in Mediterranean landscapes, Remote
Sens. Environ., 180, 99–114, 2016. a, b, c, d
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer,
C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S.,
Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.:
Solutions for a cultivated planet, Nature, 478, 337–342, 2011. a
Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.: Triple collocation-based
merging of satellite soil moisture retrievals, IEEE T.
Geosci. Remote, 55, 6780–6792, 2017. a
Hahn, S., Reimer, C., Vreugdenhil, M., Melzer, T., and Wagner, W.: Dynamic
characterization of the incidence angle dependence of backscatter using metop
ASCAT, IEEE J. Sel. Top. Appl., 10, 2348–2359, 2017. a
Hain, C. R., Crow, W. T., Anderson, M. C., and Yilmaz, M. T.: Diagnosing
neglected soil moisture source–sink processes via a thermal infrared–based
two-source energy balance model, J. Hydrometeorol., 16, 1070–1086,
2015. a
Howitt, R.: Preliminary Analysis: 2015 Drought Economic Impact Study, Tech.
rep., California Department of Food and Agriculture, 2015. a
Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., Igarashi,
T., Nakagawa, K., Oki, T., Honda, Y., and Shimoda, H.: Global Change
Observation
Mission (GCOM) for monitoring carbon, water cycles, and climate change,
P. IEEE, 98, 717–734, 2010. a
Jackson, T. E. A.: Soil Moisture Active Passive (SMAP) Project: Calibration and
Validation for the L2/3_SM_P Version 5 and L2/3_SM_P_E Version 5 Data
Products, NASA, 2018. a
Joseph, A., van der Velde, R., O'neill, P., Lang, R., and Gish, T.: Effects of
corn on C-and L-band radar backscatter: A correction method for soil moisture
retrieval, Remote Sens. Environ., 114, 2417–2430, 2010. a
Kebede, H., Fisher, D. K., Sui, R., Reddy, K. N.: Irrigation methods
and scheduling in the delta region of Mississippi: Current status and
strategies to improve irrigation efficiency, American Journal of Plant
Sciences, 5, 50005, https://doi.org/10.4236/ajps.2014.520307, 2014. a
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the
Köppen-Geiger climate classification updated, Meteorol.
Z., 15, 259–263, 2006. a, b, c, d
Kueppers, L. M., Snyder, M. A., and Sloan, L. C.: Irrigation cooling effect:
Regional climate forcing by land-use change, Geophys. Res. Lett.,
34, L03703, https://doi.org/10.1029/2006GL028679, 2007. a, b, c
Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H.,
Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F.: Evaluating
the utility of satellite soil moisture retrievals over irrigated areas and
the ability of land data assimilation methods to correct for unmodeled
processes, Hydrol. Earth Syst. Sci., 19, 4463–4478,
https://doi.org/10.5194/hess-19-4463-2015, 2015. a, b, c
Kumar, S. V., Jasinski, M., Mocko, D., Rodell, M., Borak, J., Li, B.,
Kato Beaudoing, H., and Peters-Lidard, C. D.: NCA-LDAS land analysis:
Development and performance of a multisensor, multivariate land data
assimilation system for the National Climate Assessment, J.
Hydrometeorol., https://doi.org/10.1175/JHM-D-17-0125.1, 2018. a, b
Kummu, M., Guillaume, J., De Moel, H., Eisner, S., Flörke, M., Porkka, M.,
Siebert, S., Veldkamp, T., and Ward, P.: The world's road to water scarcity:
shortage and stress in the 20th century and pathways towards sustainability,
Sci. Rep.-UK, 6, 38495, https://doi.org/10.1038/srep38495, 2016. a
Lawston, P. M., Santanello Jr., J. A., Zaitchik, B. F., and Rodell, M.:
Impact
of irrigation methods on land surface model spinup and initialization of WRF
forecasts, J. Hydrometeorol., 16, 1135–1154, 2015. a, b
Lawston, P. M., Santanello, J. A., and Kumar, S. V.: Irrigation Signals
Detected From SMAP Soil Moisture Retrievals, Geophys. Res. Lett., 44, 11860–11867,
https://doi.org/10.1002/2017GL075733,
2017. a, b, c, d, e, f
Le Toan, T., Ribbes, F., Wang, L.-F., Floury, N., Ding, K.-H., Kong, J. A.,
Fujita, M., and Kurosu, T.: Rice crop mapping and monitoring using ERS-1 data
based on experiment and modeling results, IEEE T. Geosci.
Remote, 35, 41–56, 1997. a
Linquist, B., Snyder, R., Anderson, F., Espino, L., Inglese, G., Marras, S.,
Moratiel, R., Mutters, R., Nicolosi, P., Rejmanek, H., Russo, A., Shapland,
T., Song, Z., Swelam, A., Tindula, G., and Hill, J.: Water balances
and evapotranspiration in water-and dry-seeded rice systems, Irrigation
Sci., 33, 375–385, 2015. a, b
Liu, Y. Y., Dorigo, W. A., Parinussa, R., de Jeu, R. A., Wagner, W., McCabe,
M. F., Evans, J., and Van Dijk, A.: Trend-preserving blending of passive and
active microwave soil moisture retrievals, Remote Sens. Environ.,
123, 280–297, 2012. a, b
Lobell, D. B., Bala, G., and Duffy, P. B.: Biogeophysical impacts of cropland
management changes on climate, Geophys. Res. Lett., 33, l06708,
https://doi.org/10.1029/2005GL025492, 2006. a, b, c
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J.
Remote Sens., 21, 1303–1330, 2000. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R.,
Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E.,
Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini,
K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G.,
Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu,
A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G.,
Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B.,
Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform
for coupled or offline simulation of earth surface variables and fluxes,
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013,
2013. a
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and
Entekhabi, D.: The global distribution and dynamics of surface soil moisture,
Nat. Geosci., 10, 100–104, https://doi.org/10.1038/ngeo2868,
2017. a
Meier, J., Zabel, F., and Mauser, W.: A global approach to estimate irrigated
areas – a comparison between different data and statistics, Hydrol. Earth
Syst. Sci., 22, 1119–1133, https://doi.org/10.5194/hess-22-1119-2018, 2018. a
Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S.,
and Wagner, W.: An
improved soil moisture retrieval algorithm for ERS and METOP scatterometer
observations, IEEE T. Geosci. Remote, 47,
1999–2013, 2009. a
NASS, U.: Usual planting and harvesting dates for US field crops, Tech. rep.,
NASS, USDA, 2010. a
NASS, U.: Census of agriculture, US Department of Agriculture, National
Agricultural Statistics Service, Washington, DC, 1, 2012. a, b
Nguyen, D. B., Clauss, K., Cao, S., Naeimi, V., Kuenzer, C., and Wagner, W.:
Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM
Data, Remote Sensing, 7, 15868–15893, https://doi.org/10.3390/rs71215808,
2015. a, b, c
Nguyen, D. B., Gruber, A., and Wagner, W.: Mapping rice extent and cropping
scheme in the Mekong Delta using Sentinel-1A data, Remote Sens. Lett., 7,
1209–1218, 2016. a
O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., and Bindlish, R.: SMAP
L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 5, [Indicate
subset used], Boulder, Colorado USA, NASA National Snow and Ice Data Center
Distributed Active Archive Center, https://doi.org/10.5067/SODMLCE6LGLL, 2018. a
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys.
Res.-Earth, 113, F01002, https://doi.org/10.1029/2007JF000769, 2008. a
Ozdogan, M. and Gutman, G.: A new methodology to map irrigated areas using
multi-temporal MODIS and ancillary data: An application example in the
continental US, Remote Sens. Environ., 112, 3520–3537,
https://doi.org/10.1016/j.rse.2008.04.010, 2008. a
Ozdogan, M., Woodcock, C. E., Salvucci, G. D., and Demir, H.: Changes in summer
irrigated crop area and water use in Southeastern Turkey from 1993 to 2002:
Implications for current and future water resources, Water Resour.
Manag., 20, 467–488, 2006. a, b
Ozdogan, M., Rodell, M., Beaudoing, H. K., and Toll, D. L.: Simulating the
Effects of Irrigation over the United States in a Land Surface Model Based on
Satellite-Derived Agricultural Data, J. Hydrometeorol., 11,
171–184, https://doi.org/10.1175/2009jhm1116.1, 2010a. a
Ozdogan, M., Yang, Y., Allez, G., and Cervantes, C.: Remote Sensing of
Irrigated Agriculture: Opportunities and Challenges, Remote Sensing, 2,
2274–2304, https://doi.org/10.3390/rs2092274, 2010b. a
Pereira, L. S., Oweis, T., and Zairi, A.: Irrigation management under water
scarcity, Agr. Water Manage., 57, 175–206, 2002. a
Pervez, M. S. and Brown, J. F.: Mapping Irrigated Lands at 250-m Scale by
Merging MODIS Data and National Agricultural Statistics, Remote Sensing, 2,
2388–2412, https://doi.org/10.3390/rs2102388, 2010. a, b, c, d
Pervez, S., Brown, J. F., and Maxwell, S.: Evaluation of remote sensing-based
irrigated area map for the Conterminous United States, Proceedings of the
ASPRS Pecora, 17, https://www.asprs.org/a/publications/proceedings/pecora17/0027.pdf (last access: 10 May 2018), 2008. a
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem.
Cy., 24, GB1011, https://doi.org/10.1029/2008GB003435, 2010. a, b
Pun, M., Mutiibwa, D., and Li, R.: Land Use Classification: A Surface Energy
Balance and Vegetation Index Application to Map and Monitor Irrigated Lands,
Remote Sensing, 9, 1256, https://doi.org/10.3390/rs9121256, 2017. a
Qiu, J., Gao, Q., Wang, S., and Su, Z.: Comparison of temporal trends from
multiple soil moisture data sets and precipitation: The implication of
irrigation on regional soil moisture trend, Int. J. Appl.
Earth Obs., 48, 17–27, 2016. a
Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster,
R. D., and De Lannoy, G. J.: Assessment of MERRA-2 land surface hydrology
estimates, J. Climate, 30, 2937–2960,
https://doi.org/10.1175/JCLI-D-16-0720.1,
2017a. a
Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster,
R. D., and De Lannoy, G. J.: Assessment of MERRA-2 land surface hydrology
estimates, J. Climate, 30, 2937–2960, 2017b. a
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., and
Partyka, G. S.: Land surface precipitation in MERRA-2, J. Climate,
30, 1643–1664, https://doi.org/10.1175/JCLI-D-16-0570.1,
2017c. a
Rockström, J., Falkenmark, M., Lannerstad, M., and Karlberg, L.: The
planetary water drama: Dual task of feeding humanity and curbing climate
change, Geophys. Res. Lett., 39, L15401, https://doi.org/10.1029/2012GL051688, 2012. a
Rosas, J., Houborg, R., and McCabe, M. F.: Sensitivity of Landsat 8 Surface
Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in
Dryland Irrigated Systems, Remote Sensing, 9, 988, https://doi.org/10.3390/rs9100988, 2017. a
Roseta-Palma, C., Iglesias, E., and Koppl-Turyna, M.: Illegal groundwater
pumping, in: 5th World Congress of Environmental and Resource Economists,
Istanbul, Turkey, paper, vol. 863, 2014. a
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., and Helkowski, J. H.:
Effects of global irrigation on the near-surface climate, Clim. Dynam.,
33, 159–175, https://doi.org/10.1007/s00382-008-0445-z, 2009. a, b, c
Saffi, M. and Cheddadi, A.: Identification of illegal groundwater pumping in
semi-confined aquifers, Hydrolog. Sci. J., 55, 1348–1356, 2010. a
Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D., and Douglas, E. M.:
Global rain-fed, irrigated, and paddy croplands: A new high resolution map
derived from remote sensing, crop inventories and climate data, Int.
J. Appl. Earth Obs., 38, 321–334, 2015. a, b
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review,
Earth-Sci. Rev., 99, 125 – 161,
https://doi.org/10.1016/j.earscirev.2010.02.004,
2010. a
Shiklomanov, I. A.: Appraisal and assessment of world water resources, Water
Int., 25, 11–32, 2000. a
Siebert, S., Döll, P., Hoogeveen, J., Faures, J.-M., Frenken, K., and
Feick, S.: Development and validation of the global map of irrigation areas,
Hydrol. Earth Syst. Sci., 9, 535–547,
https://doi.org/10.5194/hess-9-535-2005, 2005. a, b, c
Siebert, S., Döll, P., Feick, S., Hoogeveen, J., and Frenken, K.: Global
map of irrigation areas version 4.0. 1, Johann Wolfgang Goethe University,
Frankfurt am Main, Germany/Food and Agriculture Organization of the United
Nations, Rome, Italy, 2007. a
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll,
P., and Portmann, F. T.: Groundwater use for irrigation – a global
inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880,
https://doi.org/10.5194/hess-14-1863-2010, 2010. a, b
Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and
Scanlon, B. R.: A global data set of the extent of irrigated land from 1900
to 2005, Hydrol. Earth Syst. Sci., 19, 1521–1545,
https://doi.org/10.5194/hess-19-1521-2015, 2015. a
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y.,
Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L.,
Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A.,
Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M.,
Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, 322–329,
https://doi.org/10.1038/nclimate1744, 2012. a
Teluguntla, P., Thenkabail, P. S., Xiong, J., Gumma, M. K., Congalton, R. G.,
Oliphant, A., Poehnelt, J., Yadav, K., Rao, M., and Massey, R.: Spectral
matching techniques (SMTs) and automated cropland classification algorithms
(ACCAs) for mapping croplands of Australia using MODIS 250-m time-series
(2000–2015) data, Int. J. Digit. Earth, 10, 944–977, 2017. a
Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y.,
Velpuri, M., Gumma, M., Gangalakunta, O. R. P., Turral, H., Cai, X.,
Vithanage, J., Schull, M. A., and Dutta, R.:
Global irrigated area map (GIAM), derived from remote sensing, for the end of
the last millennium, Int. J. Remote Sens., 30, 3679–3733,
2009.
a
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and
Seneviratne, S. I.: Present-day irrigation mitigates heat extremes, J.
Geophys. Res.-Atmos., 122, 1403–1422, 2017. a
Tuinenburg, O. and Vries, J.: Irrigation Patterns Resemble ERA-Interim
Reanalysis Soil Moisture Additions, Geophys. Res. Lett., 44, 10341–10348,
https://doi.org/10.1002/2017GL074884, 2017. a, b
USDA: Farm and Ranch Irrigation Survey, Tech. rep., United States Department of
Agriculture, 2013. a, b, c, d
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global
water resources: vulnerability from climate change and population growth,
Science, 289, 284–288, 2000. a, b
Vreugdenhil, M., Dorigo, W. A., Wagner, W., De Jeu, R. A., Hahn, S., and
Van Marle, M. J.: Analyzing the vegetation parameterization in the TU-Wien
ASCAT soil moisture retrieval, IEEE T. Geosci. Remote, 54, 3513–3531, 2016. a
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture
from ERS scatterometer and soil data, Remote Sens. Environ., 70,
191–207, 1999. a
Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S.,
Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J.,
Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U.,
Kienberger, S., Brocca, L., Wang, Y., Blöschl, G., Eitzinger, J., and
Steinnocher, K.: The
ASCAT soil moisture product: A review of its specifications, validation
results, and emerging applications, Meteorol. Z., 22, 5–33,
2013. a
Wei, J., Dirmeyer, P. A., Wisser, D., Bosilovich, M. G., and Mocko, D. M.:
Where Does the Irrigation Water Go? An Estimate of the Contribution of
Irrigation to Precipitation Using MERRA, J. Hydrometeorol., 14,
275–289, https://doi.org/10.1175/jhm-d-12-079.1, 2013. a, b
Xie, P., Chen, M., and Shi, W.: CPC unified gauge-based analysis of global
daily precipitation, in: Preprints, 24th Conf. on Hydrology, Atlanta, GA,
Amer. Meteor. Soc, vol. 2,
available at: https://ams.confex.com/ams/90annual/techprogram/paper_163676.htm (last access: 5 June 2018), 2010. a