Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • IPP value: 3.97 IPP 3.97
  • SJR value: 2.023 SJR 2.023
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
  • h5-index value: 58 h5-index 58
HESS | Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 93-105, 2019
https://doi.org/10.5194/hess-23-93-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 93-105, 2019
https://doi.org/10.5194/hess-23-93-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Jan 2019

Research article | 08 Jan 2019

Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall

Laurent Delobbe et al.
Viewed  
Total article views: 1,457 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,213 233 11 1,457 77 27 32
  • HTML: 1,213
  • PDF: 233
  • XML: 11
  • Total: 1,457
  • Supplement: 77
  • BibTeX: 27
  • EndNote: 32
Views and downloads (calculated since 27 Aug 2018)
Cumulative views and downloads (calculated since 27 Aug 2018)
Viewed (geographical distribution)  
Total article views: 1,052 (including HTML, PDF, and XML) Thereof 1,037 with geography defined and 15 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Jun 2019
Publications Copernicus
Download
Short summary
In this study, we explore the use of an underground superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The comparison of radar and gravity time series over 15 years shows that short-duration intense rainfall events cause a rapid decrease in the measured gravity. Rainfall amounts can be derived from this decrease. The gravimeter allows capture of rainfall at a much larger spatial scale than a traditional rain gauge.
In this study, we explore the use of an underground superconducting gravimeter as a new source...
Citation