Austin, P. M. and Houze Jr., R. A.: Analysis of the structure of
precipitation patterns in New England, J. Appl. Meteorol., 11, 926–935,
1972.

Benoit, L., Allard, D., and Mariethoz, G.: Stochastic Rainfall Modelling at
Sub-Kilometer Scale, Water Resour. Res., https://doi.org/10.1029/2018WR022817, 2018.

Bo, Z., Islam, S., and Eltahir, E.: Aggregation-disaggregation properties of
a stochastic rainfall model, Water Resour. Res., 30, 3423–3435, 1994.

Borgogno, F., D'Odorico, P., Laio, F., and Ridolfi, L.: Effect of rainfall
interannual variability on the stability and resilience of dryland plant
ecosystems, Water Resour. Res., 43, https://doi.org/10.1029/2006WR005314, 2007.

Burton, A., Kilsby, C., Fowler, H., Cowpertwait, P., and O'Connell, P.:
RainSim: A spatial–temporal stochastic rainfall modelling system, Environ.
Modell. Softw., 23, 1356–1369, 2008.

Burton, A., Fowler, H., Blenkinsop, S., and Kilsby, C.: Downscaling transient
climate change using a Neyman–Scott Rectangular Pulses stochastic rainfall
model, J. Hydrol., 381, 18–32, 2010.

Cameron, D., Beven, K., and Naden, P.: Flood frequency estimation by
continuous simulation under climate change (with uncertainty), Hydrol. Earth
Syst. Sci., 4, 393–405, https://doi.org/10.5194/hess-4-393-2000,
2000.

Cho, H., Kim, D., Olivera, F., and Guikema, S. D.: Enhanced speciation in
particle swarm optimization for multi-modal problems, Eur. J. Oper. Res.,
213, 15–23, 2011.

Cowpertwait, P. S.: Further developments of the Neyman-Scott clustered point
process for modeling rainfall, Water Resour. Res., 27, 1431–1438, 1991.

Cowpertwait, P. S.: A Poisson-cluster model of rainfall: some high-order
moments and extreme values, P. Roy. Soc. A-Math. Phy., https://doi.org/10.1098/rspa.1998.0191, 1998.

Cowpertwait, P., Isham, V., and Onof, C.: Point process models of rainfall:
developments for fine-scale structure, P. Roy. Soc. A-Math. Phy.,
https://doi.org/10.1098/rspa.2007.1889, 2007.

Cross, D., Onof, C., Winter, H., and Bernardara, P.: Censored rainfall
modelling for estimation of fine-scale extremes, Hydrol. Earth Syst. Sci.,
22, 727–756, https://doi.org/10.5194/hess-22-727-2018, 2018.

Delleur, J. W. and Kavvas, M. L.: Stochastic models for monthly rainfall
forecasting and synthetic generation, J. Appl. Meteorol., 17, 1528–1536,
1978.

Derzekos, C., Koutsoyiannis, D., and Onof, C.: A new randomised Poisson
cluster model for rainfall in time, Enrgy. Proced., https://doi.org/10.13140/RG.2.2.32544.38403, 2005.

Dimitriadis, P. and Koutsoyiannis, D.: Climacogram versus autocovariance and
power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov
processes, Stoch. Env. Res. Risk A., 29, 1649–1669, 2015.

Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any
process dependence and distribution, Stoch. Env. Res. Risk A., 32,
1493–1515, 2018.

Efstratiadis, A., Dialynas, Y. G., Kozanis, S., and Koutsoyiannis, D.: A
multivariate stochastic model for the generation of synthetic time series at
multiple time scales reproducing long-term persistence, Environ. Modell.
Softw., 62, 139–152, 2014.

Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P. S.: Probabilistic
representation of the temporal rainfall process by a modified Neyman-Scott
Rectangular Pulses Model: Parameter estimation and validation, Water Resour.
Res., 25, 295–302, 1989.

Faramarzi, M., Abbaspour, K. C., Schulin, R., and Yang, H.: Modelling blue
and green water resources availability in Iran, Hydrol. Process., 23,
486–501, 2009.

Fatichi, S., Ivanov, V. Y., and Caporali, E.: Simulation of future climate
scenarios with a weather generator, Adv. Water Resour., 34, 448–467, 2011.

Fernandez-Illescas, C. P. and Rodriguez-Iturbe, I.: The impact of interannual
rainfall variability on the spatial and temporal patterns of vegetation in a
water-limited ecosystem, Adv. Water Resour., 27, 83–95, 2004.

Furrer, E. M. and Katz, R. W.: Improving the simulation of extreme
precipitation events by stochastic weather generators, Water Resour. Res.,
44, https://doi.org/10.1029/2008WR007316, 2008.

Glasbey, C., Cooper, G., and McGechan, M.: Disaggregation of daily rainfall
by conditional simulation from a point-process model, J. Hydrol., 165, 1–9,
1995.

Gyasi-Agyei, Y.: Identification of regional parameters of a stochastic model
for rainfall disaggregation, J. Hydrol., 223, 148–163, 1999.

Gyasi-Agyei, Y. and Willgoose, G. R.: A hybrid model for point rainfall
modeling, Water Resour. Res., 33, 1699–1706, 1997.

Iliopoulou, T., Papalexiou, S. M., Markonis, Y., and Koutsoyiannis, D.:
Revisiting long-range dependence in annual precipitation, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2016.04.015, 2016.

Islam, S., Entekhabi, D., Bras, R., and Rodriguez-Iturbe, I.: Parameter
estimation and sensitivity analysis for the modified Bartlett-Lewis
rectangular pulses model of rainfall, J. Geophys. Res-Atmos., 95, 2093–2100,
1990.

Kaczmarska, J., Isham, V., and Onof, C.: Point process models for
fine-resolution rainfall, Hydrolog. Sci. J., 59, 1972–1991, 2014.

Kaczmarska, J. M., Isham, V. S., and Northrop, P.: Local generalised method
of moments: an application to point process-based rainfall models,
Environmetrics, 26, 312–325, 2015.

Katz, R. W. and Skaggs, R. H.: On the use of autoregressive-moving average
processes to model meteorological time series, Mon. Weather Rev., 109,
479–484, 1981.

Khaliq, M. and Cunnane, C.: Modelling point rainfall occurrences with the
modified Bartlett-Lewis rectangular pulses model, J. Hydrol., 180, 109–138,
1996.

Kilsby, C., Jones, P., Burton, A., Ford, A., Fowler, H., Harpham, C., James,
P., Smith, A., and Wilby, R.: A daily weather generator for use in climate
change studies, Environ. Modell. Softw., 22, 1705–1719, 2007.

Kim, D. and Olivera, F.: Relative importance of the different rainfall
statistics in the calibration of stochastic rainfall generation models, J.
Hydrol. Eng., 17, 368–376, 2011.

Kim, D., Olivera, F., and Cho, H.: Effect of the inter-annual variability of
rainfall statistics on stochastically generated rainfall time series: part 1.
Impact on peak and extreme rainfall values, Stoch. Env. Res. Risk A., 27,
1601–1610, 2013a.

Kim, D., Olivera, F., Cho, H., and Socolofsky, S. A.: Regionalization of the
Modified Bartlett-Lewis Rectangular Pulse Stochastic Rainfall Model, Terr.
Atmos. Ocean. Sci., 24, https://doi.org/10.3319/TAO.2012.11.12.01(Hy), 2013b.

Kim, D., Kim, J., and Cho, Y.: A poisson cluster stochastic rainfall
generator that accounts for the interannual variability of rainfall
statistics: validation at various geographic locations across the united
states, J. Appl. Math., 2014, https://doi.org/10.1155/2014/560390, 2014.

Kim, D., Kwon, H., Lee, S., and Kim, S.: Regionalization of the Modified
Bartlett–Lewis rectangular pulse stochastic rainfall model across the Korean
Peninsula, J. Hydro-Environ. Res., 11, 123–137, 2016.

Kim, D., Cho, H., Onof, C., and Choi, M.: Let-It-Rain: a web application for
stochastic point rainfall generation at ungaged basins and its applicability
in runoff and flood modeling, Stoch. Env. Res. Risk A., 31, 1023–1043,
2017a.

Kim, J., Kwon, H., and Kim, D.: A hierarchical Bayesian approach to the
modified Bartlett-Lewis rectangular pulse model for a joint estimation of
model parameters across stations, J. Hydrol., 544, 210–223, 2017b.

Köppen, W.: Versuch einer Klassifikation der Klimate, vorzugsweise nach
ihren Beziehungen zur Pflanzenwelt, Geogr. Z., 6, 593–611, 1900.

Kossieris, P., Efstratiadis, A., Tsoukalas, I., and Koutsoyiannis, D.:
Assessing the performance of Bartlett-Lewis model on the simulation of Athens
rainfall, Enrgy. Proced., https://doi.org/10.13140/RG.2.2.14371.25120, 2015.

Kossieris, P., Makropoulos, C., Onof, C., and Koutsoyiannis, D.: A rainfall
disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis
based model with adjusting procedures, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2016.07.015, 2016.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of
the Köppen-Geiger climate classification updated, Meteorol. Z., 15,
259–263, 2006.

Koutsoyiannis, D.: Coupling stochastic models of different timescales, Water
Resour. Res., 37, 379–391, 2001.

Koutsoyiannis, D.: HESS Opinions “A random walk on water”, Hydrol. Earth
Syst. Sci., 14, 585–601, https://doi.org/10.5194/hess-14-585-2010, 2010.

Koutsoyiannis, D.: Generic and parsimonious stochastic modelling for
hydrology and beyond, Hydrolog. Sci. J., 61, 225–244, 2016.

Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation using adjusting
procedures on a Poisson cluster model, J. Hydrol., 246, 109–122, 2001.

Koutsoyiannis, D., Onof, C., and Wheater, H. S.: Multivariate rainfall
disaggregation at a fine timescale, Water Resour. Res., 39,
https://doi.org/10.1029/2002WR001600, 2003.

Langousis, A. and Koutsoyiannis, D.: A stochastic methodology for generation
of seasonal time series reproducing overyear scaling behaviour, J. Hydrol.,
322, 138–154, 2006.

Lombardo, F., Volpi, E., and Koutsoyiannis, D.: Rainfall downscaling in time:
theoretical and empirical comparison between multifractal and
Hurst-Kolmogorov discrete random cascades, Hydrolog. Sci. J., 57, 1052–1066,
2012.

Lombardo, F., Volpi, E., Koutsoyiannis, D., and Serinaldi, F.: A
theoretically consistent stochastic cascade for temporal disaggregation of
intermittent rainfall, Water Resour. Res., 53, 4586–4605, 2017.

Marani, M.: On the correlation structure of continuous and discrete point
rainfall, Water Resour. Res., 39, https://doi.org/10.1029/2002WR001456, 2003.

Menabde, M. and Sivapalan, M.: Modeling of rainfall time series and extremes
using bounded random cascades and levy-stable distributions, Water Resour.
Res., 36, 3293–3300, 2000.

Mishra, A. and Desai, V.: Drought forecasting using stochastic models, Stoch.
Env. Res. Risk A., 19, 326–339, 2005.

Modarres, R. and Ouarda, T. B.: Modeling the relationship between climate
oscillations and drought by a multivariate GARCH model, Water Resour. Res.,
50, 601–618, 2014.

Molnar, P. and Burlando, P.: Preservation of rainfall properties in
stochastic disaggregation by a simple random cascade model, Atmos. Res., 77,
137–151, 2005.

Moon, J., Kim, J., Moon, Y., and Kwon, H., A development of multisite hourly
rainfall simulation technique based on Neyman-Scott rectangular pulse model,
J. Korea Water Resour. Assoc., 49, 913–922, 2016.

Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation with a
cascade model: from single-station disaggregation to spatial rainfall, J.
Hydrol. Eng., 20, 04015026, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195, 2015.

Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation using a
multiplicative cascade model for spatial application in urban hydrology, J.
Hydrol., https://doi.org/10.1016/j.jhydrol.2016.01.031, 2016.

Ogston, A., Cacchione, D., Sternberg, R., and Kineke, G.: Observations of
storm and river flood-driven sediment transport on the northern California
continental shelf, Cont. Shelf Res., 20, 2141–2162, 2000.

Olsson, J. and Burlando, P.: Reproduction of temporal scaling by a
rectangular pulses rainfall model, Hydrol. Process., 16, 611–630, 2002.

Onof, C. and Wheater, H. S.: Modelling of British rainfall using a random
parameter Bartlett-Lewis rectangular pulse model, J. Hydrol., 149, 67–95,
1993.

Onof, C. and Wheater, H. S.: Improved fitting of the Bartlett-Lewis
Rectangular Pulse Model for hourly rainfall, Hydrolog. Sci. J., 39, 663–680,
1994a.

Onof, C. and Wheater, H. S.: Improvements to the modelling of British
rainfall using a modified random parameter Bartlett-Lewis rectangular pulse
model, J. Hydrol., 157, 177–195, 1994b.

Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.: A stochastic model
for high-resolution space-time precipitation simulation, Water Resour. Res.,
49, 8400–8417, 2013.

Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.: On temporal
stochastic modeling of precipitation, nesting models across scales, Adv.
Water Resour., 63, 152–166, 2014.

Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A.: Impact of
regional climate change on human health, Nature, 438, 310, https://doi.org/10.1038/nature04188, 2005.

Peleg, N. and Morin, E.: Stochastic convective rain-field simulation using a
high-resolution synoptically conditioned weather generator (HiReS-WG), Water
Resour. Res., 50, 2124–2139, 2014.

Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P.: An
advanced stochastic weather generator for simulating 2-D high-resolution
climate variables, J. Adv. Model. Earth. Sy., 9, 1595–1627, 2017.

Peres, D. and Cancelliere, A.: Estimating return period of landslide
triggering by Monte Carlo simulation, J. Hydrol., 541, 256–271, 2016.

Peres, D. J. and Cancelliere, A.: Derivation and evaluation of
landslide-triggering thresholds by a Monte Carlo approach, Hydrol. Earth
Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, 2014.

Pohle, I., Niebisch, M., Müller, H., Schümberg, S., Zha, T., Maurer,
T., and Hinz, C.: Coupling Poisson rectangular pulse and multiplicative
microcanonical random cascade models to generate sub-daily precipitation
timeseries, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2018.04.063, 2018.

Reed, S., Schaake, J., and Zhang, Z.: A distributed hydrologic model and
threshold frequency-based method for flash flood forecasting at ungauged
locations, J. Hydrol., 337, 402–420, 2007.

Ritschel, C., Ulbrich, U., Névir, P., and Rust, H. W.: Precipitation
extremes on multiple timescales – Bartlett-Lewis rectangular pulse model and
intensity-duration-frequency curves, Hydrol. Earth Syst. Sci., 21,
6501–6517, https://doi.org/10.5194/hess-21-6501-2017, 2017.

Rodriguez-Iturbe, I. and Isham, V.: Some models for rainfall based on
stochastic point processes, P. Roy. Soc. A-Math. Phy., 410, 269–288, 1987.

Rodriguez-Iturbe, I. and Isham, V.: A point process model for rainfall:
further developments, P. Roy. Soc. A-Math. Phy., 417, 283–298, 1988.

Shisanya, C., Recha, C., and Anyamba, A.: Rainfall variability and its impact
on normalized difference vegetation index in arid and semi-arid lands of
Kenya, International Journal of Geosciences, 2, 36, https://doi.org/10.4236/ijg.2011.21004, 2011.

Smithers, J., Pegram, G., and Schulze, R.: Design rainfall estimation in
South Africa using Bartlett–Lewis rectangular pulse rainfall models, J.
Hydrol., 258, 83–99, 2002.

Solo-Gabriele, H. M.: Generation of long-term record of contaminant
transport, J. Environ. Eng., 124, 619–627, 1998.

Sotiriadou, A., Petsiou, A., Feloni, E., Kastis, P., Iliopoulou, T.,
Markonis, Y., Tyralis, H., Dimitriadis, P., and Koutsoyiannis, D.: Stochastic
investigation of precipitation process for climatic variability
identification, in: EGU General Assembly Conference Abstracts 2017, 23–28 April 2017, Vienna,
Austria, 2016.

Thomas, M. A., Mirus, B. B., and Collins, B. D.: Identifying physics-based
thresholds for rainfall-induced landsliding, Geophys. Res. Lett., https://doi.org/10.1029/2018GL079662, 2018.

Tyralis, H., Dimitriadis, P., Koutsoyiannis, D., O'Connell, P. E., Tzouka,
K., and Iliopoulou, T.: On the long-range dependence properties of annual
precipitation using a global network of instrumental measurements, Adv. Water
Resour., 111, 301–318, 2018.

Ünal, N., Aksoy, H., and Akar, T.: Annual and monthly rainfall data
generation schemes, Stoch. Env. Res. Risk A., 18, 245–257, 2004.

Velghe, T., Troch, P. A., De Troch, F., and Van de Velde, J.: Evaluation of
cluster-based rectangular pulses point process models for rainfall, Water
Resour. Res., 30, 2847–2857, 1994.

Verhoest, N., Troch, P. A., and De Troch, F. P.: On the applicability of
Bartlett–Lewis rectangular pulses models in the modeling of design storms at
a point, J. Hydrol., 202, 108–120, 1997.

Verhoest, N. E., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras, T.,
and Jameleddine, S.: Are stochastic point rainfall models able to preserve
extreme flood statistics?, Hydrol. Process., 24, 3439–3445, 2010.

Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J.,
Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The
future of hydrology: An evolving science for a changing world, Water Resour.
Res., 46, https://doi.org/10.1029/2009WR008906, 2010.

Warner, K. and Afifi, T.: Where the rain falls: Evidence from 8 countries on
how vulnerable households use migration to manage the risk of rainfall
variability and food insecurity, Clim. Dev., 6, 1–17, 2014.

Wasko, C., Sharma, A., and Johnson, F.: Does storm duration modulate the
extreme precipitation-temperature scaling relationship?, Geophys. Res. Lett.,
42, 8783–8790, 2015.

Yoo, J., Kim, D., Kim, H., and Kim, T.: Application of copula functions to
construct confidence intervals of bivariate drought frequency curve, J.
Hydro-Environ. Res., 11, 113–122, 2016.

Yu, D. J., Sangwan, N., Sung, K., Chen, X., and Merwade, V.: Incorporating
institutions and collective action into a sociohydrological model of flood
resilience, Water Resour. Res., 53, 1336–1353, 2017.

Zonta, R., Collavini, F., Zaggia, L., and Zuliani, A.: The effect of floods
on the transport of suspended sediments and contaminants: a case study from
the estuary of the Dese River (Venice Lagoon, Italy), Environ. Int., 31,
948–958, 2005.

Zorzetto, E., Botter, G., and Marani, M.: On the emergence of rainfall
extremes from ordinary events, Geophys. Res. Lett., 43, 8076–8082, 2016.