Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-1011-2020
https://doi.org/10.5194/hess-24-1011-2020
Research article
 | 
03 Mar 2020
Research article |  | 03 Mar 2020

Comparison of probabilistic post-processing approaches for improving numerical weather prediction-based daily and weekly reference evapotranspiration forecasts

Hanoi Medina and Di Tian

Related authors

Customized deep learning for precipitation bias correction and downscaling
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023,https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States
Di Tian, Eric F. Wood, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 1477–1490, https://doi.org/10.5194/hess-21-1477-2017,https://doi.org/10.5194/hess-21-1477-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023,https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023,https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022,https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022,https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO, Irrigation and drainage paper 56, FAO, Rome, 300, p. D05109, 1998. 
Archambeau, C., Lee, J. A., and Verleysen, M.: On Convergence Problems of the EM Algorithm for Finite Gaussian Mixtures, in: ESANN'2003 proceedings – European Symposium on Artificial Neural Networks, 23–25 April 2003, Bruges, Belgium, 99–106, ISBN 2-930307-03-X, 2003. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. 
Bentzien, S. and Friederichs, P.: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE, Weather Forecast., 27, 988–1002, 2012. 
Download
Short summary
Reference evapotranspiration (ET0) forecasts play an important role in agricultural, environmental, and water management. This study evaluated probabilistic post-processing approaches for improving daily and weekly ensemble ET0 forecasting based on single or multiple numerical weather predictions. The three approaches used consistently improved the skill and reliability of the ET0 forecasts compared with the conventional method, due to the adjustment in the spread of the ensemble forecast.