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Abstract. Evapotranspiration (ET) is critical in linking
global water, carbon and energy cycles. However, direct mea-
surement of global terrestrial ET is not feasible. Here, we first
reviewed the basic theory and state-of-the-art approaches for
estimating global terrestrial ET, including remote-sensing-
based physical models, machine-learning algorithms and
land surface models (LSMs). We then utilized 4 remote-
sensing-based physical models, 2 machine-learning algo-
rithms and 14 LSMs to analyze the spatial and temporal vari-
ations in global terrestrial ET. The results showed that the
ensemble means of annual global terrestrial ET estimated by

these three categories of approaches agreed well, with val-
ues ranging from 589.6 mm yr−1 (6.56× 104 km3 yr−1) to
617.1 mm yr−1 (6.87× 104 km3 yr−1). For the period from
1982 to 2011, both the ensembles of remote-sensing-based
physical models and machine-learning algorithms suggested
increasing trends in global terrestrial ET (0.62 mm yr−2 with
a significance level of p < 0.05 and 0.38 mm yr−2 with a sig-
nificance level of p < 0.05, respectively). In contrast, the en-
semble mean of the LSMs showed no statistically significant
change (0.23 mm yr−2, p > 0.05), although many of the in-
dividual LSMs reproduced an increasing trend. Nevertheless,

Published by Copernicus Publications on behalf of the European Geosciences Union.



1486 S. Pan et al.: Evaluation of global terrestrial ET

all 20 models used in this study showed that anthropogenic
Earth greening had a positive role in increasing terrestrial
ET. The concurrent small interannual variability, i.e., rela-
tive stability, found in all estimates of global terrestrial ET,
suggests that a potential planetary boundary exists in regu-
lating global terrestrial ET, with the value of this boundary
being around 600 mm yr−1. Uncertainties among approaches
were identified in specific regions, particularly in the Ama-
zon Basin and arid/semiarid regions. Improvements in pa-
rameterizing water stress and canopy dynamics, the utiliza-
tion of new available satellite retrievals and deep-learning
methods, and model–data fusion will advance our predictive
understanding of global terrestrial ET.

1 Introduction

Terrestrial evapotranspiration (ET) is the sum of the wa-
ter lost to the atmosphere from plant tissues via transpira-
tion and that lost from the land surface elements, including
soil, plants and open water bodies, through evaporation. Pro-
cesses controlling ET play a central role in linking the en-
ergy (latent heat), water (moisture flux) and carbon cycles
(photosynthesis–transpiration trade-off) in the Earth system.
Over 60 % of precipitation on the land surface is returned
to the atmosphere through ET (Oki and Kanae, 2006), and
the accompanying latent heat (λET, λ is the latent heat of
vaporization) accounts for more than half of the solar en-
ergy received by the land surface (Trenberth et al., 2009).
ET is also coupled with the carbon dioxide (CO2) exchange
between the canopy and the atmosphere through vegetation
photosynthesis. These linkages make ET an important vari-
able in both short-term numerical weather forecasts and long-
term climate predictions. Moreover, ET is a critical indicator
for ecosystem functioning across a variety of spatial scales.
Therefore, in order to enhance our predictive understanding
of the Earth system and sustainability, it is essential to accu-
rately assess land surface ET in a changing global environ-
ment.

However, large uncertainty still exists in quantifying the
magnitude of global terrestrial ET and its spatial and tem-
poral patterns, despite extensive research (Allen et al., 1998;
Liu et al., 2008; Miralles et al., 2016; Mueller et al., 2011;
Tian et al., 2010). Previous estimates of global land mean
annual ET range from 417 to 650 mm yr−1 for the whole
or part of the 1982–2011 period (Mu et al., 2007; Mueller
et al., 2011; Vinukollu et al., 2011a; Zhang et al., 2010).
This large discrepancy among independent studies may be
attributed to a lack of sufficient measurements, uncertainty
in forcing data, inconsistent spatial and temporal resolutions,
ill-calibrated model parameters, and deficiencies in model
structures. Of the four components of ET (transpiration, soil
evaporation, canopy interception and open water evapora-
tion), transpiration (Tv) contributes the largest uncertainty;

this is due to the fact that it is modulated not only by sur-
face meteorological conditions and soil moisture but also
by the physiology and structures of plants. Changes in non-
climatic factors such as elevated atmospheric CO2, nitrogen
deposition and land covers also serve as influential drivers
of Tv (Gedney et al., 2006; Mao et al., 2015; S. Pan et al.,
2018; Piao et al., 2010). As such, the global ratio of transpi-
ration to ET (Tv/ET) has long been a matter of debate, with
the most recent observation-based estimate being 0.64±0.13
constrained by the global water-isotope budget (Good et al.,
2015). Most Earth system models are thought to largely un-
derestimate Tv/ET (Lian et al., 2018).

Global warming is expected to accelerate the hydrolog-
ical cycle (Pan et al., 2015). For the period from 1982 to
the late 1990s, ET was reported to have increased by about
7 mm (∼ 1.2 %) per decade driven by an increase in radia-
tive forcing and, consequently, global and regional temper-
atures (Douville et al., 2013; Jung et al., 2010; Wang et al.,
2010). The contemporary near-surface specific humidity also
increased over both land and ocean (Dai, 2006; Simmons et
al., 2010; Willett et al., 2007). More recent studies confirmed
that global ET has showed an overall increase since the 1980s
(Mao et al., 2015; Yao et al., 2016; Zeng et al., 2018a, 2012,
2016; Zhang et al., 2015; Y. Zhang et al., 2016). However,
the magnitude and spatial distribution of such a trend are far
from determined. Over the past 50 years, pan evaporation has
decreased worldwide (Fu et al., 2009; Peterson et al., 1995;
Roderick and Farquhar, 2002), implying an increase in ac-
tual ET given the pan evaporation paradox. Moreover, the in-
crease in global terrestrial ET was found to cease or even be
reversed from 1998 to 2008, primarily due to the decreased
soil moisture supply in the Southern Hemisphere (Jung et
al., 2010). To reconcile the disparity, Douville et al. (2013)
argued that the peak ET in 1998 should not be taken as a tip-
ping point because ET was estimated to increase in the multi-
decadal evolution. More efforts are needed to understand the
spatial and temporal variations of global terrestrial ET and
the underlying mechanisms that control its magnitude and
variability.

Conventional techniques, such as lysimeter, eddy co-
variance, large aperture scintillometer and the Bowen ra-
tio method, are capable of providing ET measurements at
point and local scales (Wang and Dickinson, 2012). How-
ever, it is impossible to directly measure ET at the global
scale because dense global coverage by such instruments
is not feasible, and the representativeness of point-scale
measurements to comprehensively portray the spatial het-
erogeneity of global land surface is also doubtful (Mueller
et al., 2011). To address this issue, numerous approaches
have been proposed in recent years to estimate global ter-
restrial ET and these approaches can be divided into three
main categories: (1) remote-sensing-based physical models,
(2) machine-learning algorithms and (3) land surface models
(Miralles et al., 2011; Mueller et al., 2011; Wang and Dick-
inson, 2012). Knowledge of the uncertainties in global ter-
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restrial ET estimates from different approaches is a prereq-
uisite for future projection and many other applications. In
recent years, several studies have compared multiple terres-
trial ET estimates (Khan et al., 2018; Mueller et al., 2013;
Wartenburger et al., 2018; Y. Zhang et al., 2016); however,
most of these studies analyzed multiple datasets of the same
approach or focused on investigating similarities and differ-
ences among different approaches. Few studies have been
conducted to identify uncertainties in multiple estimates of
different approaches.

In this study, we integrate state-of-the-art estimates of
global terrestrial ET, including data-driven and process-
based estimates, to assess its spatial pattern, interannual vari-
ability, environmental drivers, long-term trend and response
to vegetation greening. Our goal is not to compare the var-
ious models and choose the best one but to identify the un-
certainty sources in each type of estimate and provide sug-
gestions for future model development. In the following sec-
tions, we first give a brief introduction to all of the method-
ological approaches and ET datasets used in this study. We
then quantify the spatiotemporal variations in global terres-
trial ET during the period from 1982 to 2011 by analyzing
the results from the current state-of-the-art models. Finally,
we discuss some suggested solutions for reducing the identi-
fied uncertainties.

2 Methodology and data sources

2.1 Overview of approaches to global ET estimation

2.1.1 Remote-sensing-based physical models

Satellite remote sensing has been widely recognized as a
promising tool for estimating global ET, because it is capable
of providing spatially and temporally continuous measure-
ments of critical biophysical parameters affecting ET, includ-
ing vegetation states, albedo, the fraction of absorbed photo-
synthetically active radiation, land surface temperature and
plant functional types (Li et al., 2009). Since the 1980s, a
large number of methods have been developed using a vari-
ety of satellite observations (K. Zhang et al., 2016). How-
ever, some of these methods, such as surface energy bal-
ance (SEB) models and surface temperature–vegetation in-
dex (Ts–VI), are usually applied at local and regional scales.
At the global scale, the vast majority of the existing remote-
sensing-based physical models can be categorized into two
groups: those based on the Penman–Monteith (PM) equation
and those based on the Priestley–Taylor (PT) equation.

Remote sensing models based on the Penman–Monteith
equation

The Penman equation, derived from the Monin–Obukhov
similarity theory and surface energy balance, uses surface net
radiation, temperature, humidity, wind speed and ground heat

flux to estimate ET from an open water surface. For vegetated
surfaces, canopy resistance was introduced into the Penman
equation by Monteith (Monteith, 1965), and the PM equation
is formulated as follows:

λET=
1(Rn−G)+ ρaCpVPD/ra

1+ γ (1+ rs/ra)
, (1)

where1,Rn,G, ρa,Cp, γ , rs, ra and VPD are the slope of the
curve relating saturated water vapor pressure to air tempera-
ture, net radiation, soil heat flux, air density, the specific heat
of air, the psychrometric constant, surface resistance, aero-
dynamic resistance and the vapor pressure deficit, respec-
tively. The canopy resistance term in the PM equation ex-
erts a strong control on transpiration. For example, based on
the algorithm proposed by Cleugh et al. (2007), the MODIS
(Moderate Resolution Imaging Spectroradiometer) ET algo-
rithm improved the model performance via the inclusion of
environmental stress into the canopy conductance calcula-
tion and explicitly accounted for soil evaporation (Mu et al.,
2007). Further, Mu et al. (2011) improved the MODIS ET
algorithm by considering nighttime ET, adding the soil heat
flux calculation, separating the dry canopy surface from the
wet, and dividing the soil surface into saturated wet surface
and moist surface. Similarly, Zhang et al. (2010) developed
a Jarvis–Stewart-type canopy conductance model based on
the normalized difference vegetation index (NDVI) to take
advantage of the long-term Advanced Very High Resolu-
tion Radiometer (AVHRR) dataset. More recently, this model
was improved by adding a CO2 constraint function into the
canopy conductance estimate (Zhang et al., 2015). Another
important revision for the PM approach is proposed by Le-
uning et al. (2008). The Penman–Monteith–Leuning method
adopts a simple biophysical model for canopy conductance,
which can account for the influences of radiation and the at-
mospheric humidity deficit. Additionally, it introduces a sim-
pler soil evaporation algorithm than that proposed by Mu
et al. (2007), which potentially makes it attractive for use
with remote sensing. However, PM-based models have one
intrinsic weakness – temporal upscaling – which is required
when translating instantaneous ET estimation into a longer
timescale value (Li et al., 2009). This could easily be done
at the daily scale under clear-sky conditions but faces chal-
lenge at weekly to monthly timescales due to lack of cloud
coverage information.

Remote sensing models based on the Priestley–Taylor
equation

The Priestley–Taylor (PT) equation is a simplification of the
PM equation that does not parameterize aerodynamic and
surface conductance (Priestley and Taylor, 1972); it can be
expressed as follows:

λET= fstress×α×
1

1+ γ
× (Rn−G), (2)
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where fstress is a stress factor and is usually computed as a
function of environmental conditions. α is the PT param-
eter with a value of between 1.2 and 1.3 under water un-
stressed conditions and can be estimated using remote sens-
ing. Although the original PT equation works well for es-
timating potential ET across most surfaces, the Priestley–
Taylor coefficient, α, usually needs adjustment to convert
potential ET to actual ET (K. Zhang et al., 2016). Thus,
Fisher et al. (2008) developed a modified PT model that
keeps α constant but scales down potential ET using eco-
physiological constraints and soil evaporation partitioning.
The accuracy of their model has been validated against eddy-
covariance measurements conducted in a wide range of cli-
mates and involving many plant functional types (Fisher et
al., 2009; Vinukollu et al., 2011b). Following this idea, Yao
et al. (2013) further developed a modified Priestley–Taylor
algorithm that constrains soil evaporation using the index
of the soil water deficit derived from the apparent thermal
inertia. Miralles et al. (2011) also proposed a novel PT-
type model: the Global Land Evaporation Amsterdam Model
(GLEAM). GLEAM combines a soil water module, a canopy
interception model and a stress module within the PT equa-
tion. The key distinguishing features of this model are the
use of microwave-derived soil moisture, land surface tem-
perature and vegetation density, and the detailed estimation
of rainfall interception loss. In this way, GLEAM minimizes
the dependence on static variables, avoids the need for pa-
rameter tuning and enables the quality of the evaporation es-
timates to rely on the accuracy of the satellite inputs (Mi-
ralles et al., 2011). Compared with the PM approach, the
PT-based approaches avoid the computational complexities
of aerodynamic resistance and the accompanying error prop-
agation. However, the many simplifications and semiempir-
ical parameterization of physical processes in the PT-based
approaches may lower its accuracy.

2.1.2 Vegetation-index-based empirical algorithms and
machine-learning methods

The principle of empirical ET algorithms is to link observed
ET to its controlling environmental factors through various
statistical regressions or machine-learning algorithms of dif-
ferent complexities. The earliest empirical regression method
was proposed by Jackson et al. (1977). At present, the ma-
jority of regression models are based on vegetation indices
(Glenn et al., 2010), such as the NDVI and the enhanced veg-
etation index (EVI), because of their simplicity, resilience in
the presence of data gaps, utility under a wide range of con-
ditions and connection with vegetation transpiration capacity
(Maselli et al., 2014; Nagler et al., 2005; Yuan et al., 2010).
As an alternative to statistical regression methods, machine-
learning algorithms have been gaining increased attention for
ET estimation due to their ability to capture the complex non-
linear relationships between ET and its controlling factors
(Dou and Yang, 2018). Many conventional machine-learning

algorithms, such as those based on artificial neural networks,
random forest, and support vector machine algorithms, have
been applied in various ecosystems (Antonopoulos et al.,
2016; Chen et al., 2014; Feng et al., 2017; Shrestha and
Shukla, 2015) and have proved to be more accurate in es-
timating ET than simple regression models (Antonopoulos
et al., 2016; Chen et al., 2014; Kisi et al., 2015; Shrestha and
Shukla, 2015; Tabari et al., 2013). In upscaling FLUXNET
ET to the global scale, Jung et al. (2010) used the model
tree ensemble method to integrate eddy-covariance measure-
ments of ET with satellite remote sensing and surface mete-
orological data. In a recent study (Bodesheim et al., 2018),
the random forest approach was used to derive global ET at
a 30 min timescale.

2.1.3 Process-based land surface models (LSMs)

Although satellite-derived ET products have provided quan-
titative investigations of historical terrestrial ET dynamics,
they can only cover a limited temporal record of about 4
decades. To obtain terrestrial ET before the 1980s and pre-
dict future ET dynamics, LSMs are needed, as they are able
to represent a large number of interactions and feedbacks
between physical, biological and biogeochemical processes
in a prognostic way (Jimenez et al., 2011). ET simulation
in LSMs is regulated by multiple biophysical and physio-
logical properties or processes, including but not limited to
stomatal conductance, leaf area, root water uptake, soil wa-
ter, runoff and (sometimes) nutrient uptake (Famiglietti and
Wood, 1991; Huang et al., 2016; Lawrence et al., 2007). Al-
though almost all current LSMs have these components, dif-
ferent parameterization schemes result in substantial differ-
ences in ET estimation (Wartenburger et al., 2018). There-
fore, in recent years, the multi-model ensemble approach has
become popular in quantifying the magnitude, spatiotempo-
ral pattern and uncertainty of global terrestrial ET (Mueller
et al., 2011; Wartenburger et al., 2018). Yao et al. (2017)
showed that a simple model averaging method or a Bayesian
model averaging method is superior to each individual model
in predicting terrestrial ET.

2.2 Description of ET models used in this study

In this study, we evaluate 20 ET products that are based on
remote-sensing-based physical models, machine-learning al-
gorithms and LSMs to investigate the magnitudes and spatial
patterns of global terrestrial ET over recent decades. Table 1
lists the input data, the ET algorithms adopted, the advan-
tages and limitations, and the references for each product.
We use a simple model averaging method when calculating
the mean value of multiple models.

Four physically based remote sensing datasets, includ-
ing the Process-based Land Surface Evapotranspiration/Heat
Fluxes algorithm (P-LSH), the Global Land Evaporation
Amsterdam Model (GLEAM), the Moderate Resolution
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Imaging Spectroradiometer (MODIS) and the PML-CSIRO
(Penman–Monteith–Leuning), and two machine-learning
datasets, which are based on random forest (RF) and model
tree ensemble (MTE), are used in our study. Both machine-
learning and physically based remote sensing datasets (six
datasets in total) were considered as benchmark products.
The ensemble mean of the benchmark products was calcu-
lated as the mean value of all machine-learning and physi-
cally based satellite estimates as we treated each benchmark
dataset equally.

Three of the four remote-sensing-based physical models
quantify ET using PM approaches. P-LSH adopts a modified
PM approach coupled with biome-specific canopy conduc-
tance determined from NDVI (Zhang et al., 2010). The mod-
ified P-LSH model used in this study also accounts for the in-
fluences of atmospheric CO2 concentrations and wind speed
on canopy stomatal conductance and aerodynamic conduc-
tance (Zhang et al., 2015). The MODIS ET model is based
on the algorithm proposed by Cleugh et al. (2007). Mu et
al. (2007) improved the model performance through the in-
clusion of environmental stress into the canopy conductance
calculation and by explicitly accounting for soil evaporation
by combining the complementary relationship hypothesis
with the PM equation. The MODIS ET product (MOD16A3)
used in this study was further improved by considering night-
time ET, simplifying the vegetation cover fraction calcula-
tion, adding the soil heat flux item, dividing the saturated wet
and moist soil, separating the dry and wet canopy, as well
as modifying algorithms of aerodynamic resistance, stom-
atal conductance and boundary layer resistance (Mu et al.,
2011). PML-CSIRO adopts the Penman–Monteith–Leuning
algorithm, which calculates surface conductance and canopy
conductance using a biophysical model instead of classic em-
pirical models. The maximum stomatal conductance is es-
timated using the trial-and-error method (Y. Zhang et al.,
2016). Furthermore, for each grid covered by natural veg-
etation, the PML-CSIRO model constrains ET at the annual
scale using the Budyko hydrometeorological model proposed
by Fu (1981). The GLEAM ET calculation is based on the
PT equation, which requires fewer model inputs than the
PM equation, and the majority of these inputs can be di-
rectly achieved from satellite observations. Its rationale is to
make the most of information about evaporation contained in
the satellite-based environmental and climatic observations
(Martens et al., 2017; Miralles et al., 2011). Key variables
including air temperature, land surface temperature, precipi-
tation, soil moisture, vegetation optical depth and snow water
equivalent are satellite-observed values. Moreover, the exten-
sive usage of microwave remote sensing products in GLEAM
ensures the accurate estimation of ET under diverse weather
conditions. Here, we use GLEAM v3.2, which has overall
better quality than previous versions (Martens et al., 2017).

The first used machine-learning model, MTE, is based
on the Tree Induction Algorithm (TRIAL) and Evolving
Trees with Random Growth (ERROR) algorithm (Jung et al.,

2009). The TRIAL grows model trees from the root node and
splits at each node with the criterion of minimizing the sum
of squared errors of multiple regressions in both subdomains.
ERROR is used to select the model trees that are indepen-
dent of one another and have the best performance based on
the Schwarz criterion. The canopy fraction of absorbed pho-
tosynthetic active radiation (fAPAR), temperature, precipita-
tion, relative humidity, sunshine hours and potential radia-
tion are used as explanatory variables to train MTE (Jung et
al., 2011). The second machine-learning model is the random
forest (RF) algorithm, whose rationale is generating a set of
independent regression trees by randomly selecting training
samples automatically (Breiman, 2001). Each regression tree
is constructed using samples selected by a bootstrap sam-
pling method. After fixing the individual tree in entity, the
final result is determined by simple averaging. One merit of
the RF algorithm is its capability to handle complicated non-
linear problems and high dimensional data (Xu et al., 2018).
For the RF product used in this study, multiple explanatory
variables including the enhanced vegetation index, fAPAR,
the leaf area index, daytime and nighttime land surface tem-
perature, incoming radiation, top-of-atmosphere potential ra-
diation, the index of water availability and relative humidity
were used to train regression trees (Bodesheim et al., 2018).

The 14 LSM-derived ET products were from the Trends
and Drivers of the Regional Scale Sources and Sinks
of Carbon Dioxide (TRENDY) project (including CA-
BLE, CLASS-CTEM, CLM45, DLEM, ISAM, JSBACH,
JULES, LPJ-GUESS, LPJ-wsl, LPX-Bern, O-CN, OR-
CHIDEE, ORCHIDEE-MICT and VISIT). Daily gridded
meteorological reanalyzes from the CRU-NCEPv8 dataset
(temperature, precipitation, long- and shortwave incoming
radiation, wind speed, humidity and air pressure) were used
to drive the LSMs. The TRENDY simulations were per-
formed in year 2017 and contributed to the global carbon
budget reported in Le Quéré et al. (2018). We used the re-
sults from the S3 simulation from TRENDYv6 (with chang-
ing CO2, climate and land use) over the period from 1982
to 2011, which is a time period consistent with other prod-
ucts derived from remote-sensing-based physical models and
machine-learning algorithms.

2.3 Description of other datasets

To quantify the contributions of vegetation greening to terres-
trial ET variations, we used the LAI from the TRENDYv6
S3 simulation. We also used the newest version of the
Global Inventory Modeling and Mapping Studies LAI data
(GIMMS LAI3gV1) as the satellite-derived LAI. GIMMS
LAI3gV1 was generated from AVHRR GIMMS NDVI3g us-
ing a model derived from an artificial neural network (ANN;
Zhu et al., 2013). It covers the period from 1982 to 2016
with bimonthly frequency and has a 1/12◦ spatial resolu-
tion. To achieve a uniform resolution, all data were resam-
pled to 1/2◦ using the nearest neighbor method. Follow-
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ing N. Pan et al. (2018), grids with an annual mean NDVI
of less than 0.1 were assumed to be non-vegetated regions
and were, therefore, masked out. NDVI data are from the
GIMMS NDVI3gV1 dataset. Temperature, precipitation and
radiation are from the CRU-NCEPv8 dataset.

2.4 Statistical analysis

The significance of ET trends was analyzed using the Mann-
Kendall (MK) test (Kendall, 1955; Mann, 1945). It is a rank-
based nonparametric method that has been widely applied
for detecting trends in hydro-climatic time series (Sayemuz-
zaman and Jha, 2014; Yue et al., 2002). The Theil–Sen es-
timator was applied to estimate the magnitude of the slope.
The advantage of this method over an ordinary least squares
estimator is that it limits the influence of the outliers on the
slope (Sen, 1968).

Terrestrial ET interannual variability (IAV) is mainly con-
trolled by variations in temperature, precipitation and short-
wave solar radiation (Zeng et al., 2018b; Zhang et al., 2015).
In this study, we performed partial correlation analyses be-
tween ET and these three climatic variables at an annual
scale for each grid cell to explore climatic controls on ET
IAV. Variability caused by climatic variables was assessed
through the square of partial correlation coefficients between
ET and temperature, precipitation and radiation. We chose
partial correlation analysis because it can quantify the link-
age between ET and a single environmental driving factor
while controlling the effects of the other remaining environ-
mental factors. Partial correlation analysis is a widely ap-
plied statistical tool to isolate the relationship between two
variables from the confounding effects of many correlated
variables (Anav et al., 2015; Jung et al., 2017; Peng et al.,
2013). All variables were first detrended in the statistical cor-
relation analysis, as we focus on the interannual relationship.
The study period is from 1982 to 2011 for all models except
MODIS and random forest, which have a temporal coverage
that is limited to 2001–2011 because of data availability.

To quantify the contribution of vegetation greening to ter-
restrial ET, we separated the trend in terrestrial ET into four
components induced by climatic variables and vegetation dy-
namics by establishing a multiple linear regression model be-
tween global ET and temperature, precipitation, shortwave
radiation and LAI (Eqs. 3, 4):

δ (ET)=
∂ (ET)
∂ (LAI)

δ (LAI)+
∂ (ET)
∂T

δ (T)+
∂ (ET)
∂ (P )

δ (P )

+
∂ (ET)
∂R

δ (R)+ ε (3)

δ (ET)= γ LAI
ET δLAI+ γ TETδT + γ

P
ETδP ++γ

R
ETδR+ ε, (4)

where γ LAI
ET , γ TET, γ PET and γ RET are the sensitivities of ET to

the leaf area index (LAI), air temperature (T ), precipitation
(P ) and radiation (R), respectively. ε is the residual, repre-
senting the impacts of other factors.

After calculating γ LAI
ET , γ TET, γ PET and γ RET, the contribu-

tion of the trend in factor i (Trend(i)) to the trend in ET
(Trend(ET)) can be quantified as follows:

Contri(i)=
(
γ iET×Trend(i)

)
/Trend(ET). (5)

In performing multiple linear regression, we used the
GIMMS LAI for both remote-sensing-based physical mod-
els and machine-learning methods as well as the individ-
ual TRENDYv6 LAI for each TRENDY model. The grid-
ded data of temperature, precipitation and radiation are from
CRU-NCEPv8.

3 Results

3.1 The ET magnitude estimated by multiple models

The multiyear ensemble mean of annual global terrestrial ET
from 2001 to 2011 derived by machine-learning methods,
remote-sensing-based physical models and the TRENDY
models agreed well, with values ranging from 589.6 to
617.1 mm yr−1. However, substantial differences existed
among individual models (Fig. 1). LPJ-wsl (455.3 mm yr−1)
and LPX-Bern (453.7 mm yr−1) estimated significantly
lower ET than other models, even in comparison with most
previous studies focusing on earlier periods (Table S1 in
the Supplement). On the contrary, JULES gave the largest
ET estimate (697.3 mm yr−1, which is equal to 7.57×
104 km3 yr−1) among all models, and showed an obvious in-
crease in ET compared with its estimation from 1950 to 2000
(6.5× 104 km3 yr−1, Table S1).

3.2 Spatial patterns of global terrestrial ET

As shown in Fig. 2, the spatial patterns of the multiyear
average annual ET of different categories were similar. ET
was highest in the tropics and low in the northern high lat-
itudes and arid regions such as Australia, central Asia, the
western US and the Sahel. Compared with remote-sensing-
based physical models and LSMs, machine-learning meth-
ods obtained a smaller spatial gradient. In general, latitudi-
nal profiles of ET estimated using different approaches were
also consistent (Fig. 3). However, machine-learning meth-
ods gave higher ET estimate at high latitudes and lower ET
in the tropics compared with other approaches. In the trop-
ics, LSMs have significantly larger uncertainties than bench-
mark products, and the standard deviation of LSMs is about
2 times higher than that of benchmark products (Fig. 3). At
other latitudes, LSMs and benchmark ET products generally
have comparable uncertainties. The largest difference in ET
in the different categories was found in the Amazon Basin
(Fig. 2). In most regions of the Amazon Basin, the mean ET
of remote sensing physical models is more than 200 mm yr−1

higher than the mean ET of LSMs and machine-learning
methods. For individual ET estimates, the largest uncertainty
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Figure 1. Average annual global terrestrial ET estimated by each model during the period from 2001 to 2011. Error bars represent the
standard deviation of each model. The four lines indicate the mean value of each category.

was also found in the Amazon Basin. MODIS, VISIT and
CLASS-CTEM estimated that the annual ET was higher
than 1300 mm in the majority of Amazon, whereas JSBACH
and LPJ-wsl estimated an ET value lower than 800 mm yr−1

(Fig. S1). As is shown in Fig. S2, the differences in ET
estimates among TRENDY models were larger than those
among benchmark estimates for tropical and humid regions.
The uncertainty of ET estimates from LSMs is particularly
large in the Amazon Basin, where the standard deviation of
LSM estimates is more than 2 times larger than that of bench-
mark estimates. It is noteworthy that, in arid and semiarid re-
gions such as western Australia, central Asia, northern China
and the western US, the difference in ET estimates among
LSMs is significantly smaller than those among remote sens-
ing models and machine-learning algorithms.

3.3 Interannual variations in global terrestrial ET

The ensemble mean interannual variability (IAV) of remote
sensing ET estimates and LSM ET estimates showed sim-
ilar spatial patterns (Fig. 4). Both remote sensing physical
models and LSMs presented low IAV in ET in the north-
ern high latitudes but high IAV in ET in the southwestern
US, India, sub-Saharan Africa, the Amazon and Australia. In

contrast, the IAV of machine-learning-based ET was much
weaker. In most regions, the IAV of machine-learning ET is
lower than 40 % of the IAV of remote sensing physical ET
and LSM ET, and this phenomenon is especially pronounced
in tropical regions. Further investigation into the spatial pat-
terns of ET IAV for individual models showed that the two
machine-learning methods performed equally with respect
to estimating spatial patterns of ET IAV (Fig. S4). In con-
trast, differences in ET IAV among remote sensing physi-
cal estimates and LSM estimates were much larger. LSMs
showed the largest differences in the IAV of ET in tropical
regions. For example, CABLE and JULES obtained an ET
IAV of less than 15 mm yr−1 in most regions of the Amazon
Basin, whereas LPJ-GUESS predicted an ET IAV of more
than 60 mm yr−1. Figure 5 shows that remote sensing physi-
cal ET and LSM ET had comparable IAV north of 20◦ S, but
the IAV of the machine-learning-based ET was much lower
in this region. In the region south of 20◦ S, TRENDY ET
showed the largest IAV, followed by those of remote sensing
physical ET and machine-learning estimates. The three ap-
proaches agreed on that ET IAV in the Southern Hemisphere
was generally larger than that in the Northern Hemisphere.
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Figure 2. Spatial distributions of the mean annual ET derived from (a) remote-sensing-based physical models, (b) machine-learning algo-
rithms, (c) benchmark datasets and (d) the TRENDY LSMs’ ensemble mean, respectively.

Figure 3. Latitudinal profiles of the mean annual ET for different categories of models. Each line represents the mean value of the corre-
sponding category, and the shading represents the interval of 1 standard deviation.
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Figure 4. Spatial distributions of the interannual variability in ET derived from (a) remote-sensing-based physical models, (b) machine-
learning algorithms, (c) benchmark datasets and (d) the TRENDY LSMs’ ensemble mean, respectively. The study period used in this study
for the interannual variability analysis is from 1982 to 2011.

Figure 5. Latitudinal profiles of ET IAV for different categories of models. Each line represents the mean value of the corresponding category,
and the shading represents the interval of 1 standard deviation.
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3.4 Climatic controls on ET

According to the ensemble remote sensing models, temper-
ature and radiation dominated ET IAV in northern Eura-
sia, northern and eastern North America, southern China,
the Congo River basin, and the southern Amazon River
basin, while precipitation dominated ET IAV in arid re-
gions and semiarid regions (Fig. 6a). The ensemble machine-
learning algorithms had a similar pattern, but they suggested
a stronger control of radiation in the Amazon Basin and a
weaker control of precipitation in several arid regions such
as central Asia and northern Australia (Fig. 6b). In com-
parison, the ensemble LSMs suggested the strongest control
of precipitation on ET IAV (Fig. 6). According to the en-
semble LSMs, ET IAV was dominated by precipitation IAV
in most regions of the Southern Hemisphere and at north-
ern low latitudes. Temperature and radiation only controlled
northern Eurasia, eastern Canada and part of the Amazon
Basin (Fig. 6d). As is shown in Fig. S6, the majority of
LSMs agreed on the dominant role of precipitation in con-
trolling ET in regions south of 40◦ N. However, the pattern
of climatic controls in the ORCHIDEE-MICT model is quite
unique and different from all of the other LSMs. Accord-
ing to the ORCHIDEE-MICT model, radiation and temper-
ature dominate ET IAV in more regions, and precipitation
only controls ET IAV in eastern Brazil, northern Russia, cen-
tral Europe and a part of tropical Africa. As ORCHIDEE-
MICT was developed from ORCHIDEE, the dynamic root
parameterization in ORCHIDEE-MICT may explain why ET
is less driven by precipitation compared with ORCHIDEE
(Haverd et al., 2018). It is noted that two machine-learning
algorithms, MTE and RF, showed significant discrepancies
in the spatial pattern of dominant climatic factors. Accord-
ing to the result from MTE, temperature controlled ET IAV
in regions north of 45◦ N, the eastern US, southern China
and the Amazon Basin (Fig. S6e). By contrast, RF suggested
that precipitation and radiation dominated ET IAV in these
regions (Fig. S6f).

3.5 Long-term trends in global terrestrial ET

All approaches suggested an overall increasing trend in
global ET during the period from 1982 to 2011 (Fig. 7), al-
though ET decreased from 1998 to 2009. This result is con-
sistent with previous studies (Jung et al., 2010; Lian et al.,
2018; Zhang et al., 2015). Remote sensing physical mod-
els indicated the largest increase in ET (0.62 mm yr−2), fol-
lowed by the machine-learning method (0.38 mm yr−2) and
land surface models (0.23 mm yr−2). The mean ET of all cat-
egories except LSMs significantly increased during the study
period (p < 0.05). It is noted that the ensemble mean ET
values of different categories are statistically correlated with
each other (p < 0.001), even if the driving forces of different
ET approaches are different.

All remote sensing and machine-learning estimates indi-
cate a significant increasing trend in ET during the study
period (p < 0.05), although the increase rate of P-LSH
(1.07 mm yr−2) is more than 3 times as large as that of
GLEAM (0.33 mm yr−2). Nevertheless, there is a larger dis-
crepancy among LSMs in terms of the ET trend. The ma-
jority of LSMs (10 of 14) suggest an increasing trend
with an average trend of 0.34 mm yr−2 (p < 0.05), and
eight of them are statistically significant (see Table 2).
However, four LSMs (JSBACH, JULES, ORCHIDEE and
ORCHIDEE-MICT) suggest a decreasing trend with an av-
erage trend of −0.12 mm yr−2 (p > 0.05). Among the four
decreasing trends, only the trend of ORCHIDEE-MICT
(−0.34 mm yr−2) is statistically significant (p < 0.05).

According to Fig. 8, the ensemble means of all the three
approaches showed increasing trends in ET over western and
southern Africa, western India and northern Australia, and
decreasing ET over the western US, southern South Amer-
ica and Mongolia. Discrepancies in ET trends mainly ap-
peared in eastern Europe, eastern India and central China.
LSMs also suggested a larger area of decreasing ET in both
North America and South America. Although the differences
in ET trends among individual models were larger than those
among the ensemble means of different approaches, the ma-
jority of models agreed that ET increased in western and
southern Africa, and decreased in the western US and south-
ern South America (Fig. S2). For both remote sensing esti-
mates and LSM estimates, ET trends in the Amazon Basin
had large uncertainty: P-LSH, CLM45 and VISIT suggested
a large area of increasing ET, whereas GLEAM, JSBACH
and ORCHIDEE suggested a large area of decreasing ET.

3.6 Impacts of vegetation changes on ET variations

During the period from 1982 to 2011, global LAI trends es-
timated from remote sensing data and from the ensemble
LSMs are 2.51× 10−3 m2 m−2 yr−1 (p < 0.01) and 4.63×
10−3 m2 m−2 yr−1 (p < 0.01), respectively (Table 2). All
LSMs suggested a significant increasing trend in global
LAI (greening). For both benchmark estimates and LSM
estimates, it was found that the spatial pattern of trends
in ET matched well with that of trends in the LAI
(Figs. 8c, d, S5a, b), indicating significant effects of veg-
etation dynamics on ET variations. According to the re-
sults of the multiple linear regression, all models agreed
that greening of the Earth since the early 1980s intensified
terrestrial ET (Table 2), although there was a significant
discrepancy in the magnitude of ET intensification which
varied from 0.04 to 0.70 mm yr−2. The ensemble LSMs
suggested a smaller ET increase (0.23 mm yr−2) than the
ensemble remote sensing physical models (0.62 mm yr−2)
and machine-learning algorithm (0.38 mm yr−2). Neverthe-
less, the greening-induced ET intensification estimated by
LSMs (0.37 mm yr−2) is larger than that estimated by remote
sensing models (0.28 mm yr−2) and machine-learning algo-
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Figure 6. Spatial distributions of climatic controls on the interannual variation of ET derived from the ensemble means of remote-sensing-
based physical models (a), machine-learning algorithms (b), benchmark data (c) and the TRENDY LSMs (d). (Red denotes temperature,
green denotes precipitation and blue denotes radiation.)

Figure 7. Interannual variations in global terrestrial ET estimated using different categories of approaches.

www.hydrol-earth-syst-sci.net/24/1485/2020/ Hydrol. Earth Syst. Sci., 24, 1485–1509, 2020



1498 S. Pan et al.: Evaluation of global terrestrial ET

Table 2. Interannual variability (IAV – denoted as standard deviation) and the trend of global terrestrial ET from 1982 to 2011 and the
contribution of vegetation greening to the ET trend. (RS refers to remote sensing.)

Model ET IAV ET trend Greening-induced Sensitivity of LAI trend
(mm yr−1) (mm yr−2) ET change ET to LAI (10−3 m2 m−2 yr−1)

(mm yr−2) (mm yr−2 m−2 m−2)

Machine MTE 5.93 0.38∗ 0.09 35.86 2.51∗

learning

RS models P-LSH 9.95 1.07∗ 0.34 135.46 2.51∗

GLEAM 8.47 0.33∗ 0.14 55.78 2.51∗

PML-CSIRO 7.18 0.41∗ 0.36 143.43 2.51∗

RS model mean 7.98 0.62∗ 0.28 111.55 2.51∗

LSMs CABLE 9.63 0.07 0.35 102.64 3.41∗

CLASS-CTEM 12.22 0.35∗ 0.53 134.52 3.94∗

CLM45 8.68 0.38∗ 0.31 67.54 4.59∗

DLEM 7.21 0.26∗ 0.53 200.76 2.64∗

ISAM 7.50 0.22 0.16 32.26 4.96∗

JSBACH 10.12 −0.05 0.50 217.39 2.30∗

JULES 11.33 −0.02 0.34 85.21 3.99∗

LPJ-GUESS 7.48 0.50∗ 0.28 160.92 1.74∗

LPJ-wsl 4.77 0.24∗ 0.19 31.56 6.02∗

LPX-Bern 4.80 0.20∗ 0.04 4.04 9.90∗

O-CN 10.41 0.32∗ 0.53 89.23 5.94∗

ORCHIDEE 9.28 −0.17 0.21 96.33 2.18∗

ORCHIDEE-MICT 10.70 −0.34∗ 0.50 171.23 2.92∗

VISIT 6.31 0.87∗ 0.70 51.40 13.62∗

LSM mean 7.73 0.23 0.37 79.91 4.63∗

∗ Suggests significance at the 95 % confidence level (p < 0.05).

rithms (0.09 mm yr−2), as LSMs suggested a stronger green-
ing trend than remote sensing models. The contribution of
vegetation greening to ET intensification estimated by the
ensemble LSMs is larger than 100 %, whereas the contri-
butions estimated by the ensemble remote sensing physical
models (0.62 mm yr−2) and machine-learning algorithm are
smaller than 50 %. Although TRENDY LSMs were driven
by the same climate data and remote sensing physical mod-
els were driven by varied climate data, TRENDY LSMs still
showed a larger discrepancy in terms of the effect of vege-
tation greening on terrestrial ET than remote sensing phys-
ical models due to the significant differences in both LAI
trends (1.74–13.63× 10−3 m2 m−2 yr−1) and the sensitivi-
ties of ET to the LAI (4.04–217.39 mm yr−2 m−2 m−2). In
comparison, remote sensing physical models had smaller dis-
crepancies in terms of the sensitivity of ET to LAI (55.78–
143.43 mm yr−2 m−2 m−2).

4 Discussion and perspectives

4.1 Sources of uncertainty

4.1.1 Uncertainty in the ET estimation of the Amazon
Basin

LSMs show large discrepancies in the magnitude and trend
of ET in the Amazon Basin (Figs. 3, S3). However, it is
challenging to identify the uncertainty sources. Given that
the TRENDY LSMs used uniform meteorological inputs, the
discrepancies in ET estimates among the participating mod-
els mainly arise from the differences in the underlying model
structures and parameters. One potential source of uncer-
tainty is the parameterization of root water uptake. In the
Amazon Basin, a deep root depth has been confirmed using
field measurements (Nepstad et al., 2004). However, many
LSMs have an unrealistically shallow rooting depth (gener-
ally less than 2 m), thereby neglecting the existence and sig-
nificance of deep roots. The incorrect root distributions en-
large the differences in plant available water and root water
uptake, producing large uncertainties in ET. In addition, dif-
ferences in the parameterization of other key processes per-
tinent to ET such as LAI dynamics (Fig. S5), canopy con-
ductance variations (Table 1), water movements in the soil
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Figure 8. Spatial distributions of ET trends from 1982 to 2011 derived from (a) remote-sensing-based physical models, (b) machine-learning
algorithms, (c) benchmark datasets and (d) the TRENDY LSMs’ ensemble mean, respectively. Regions with nonsignificant trends were
excluded.

(Abramopoulos et al., 1988; Clark et al., 2015; Noilhan and
Mahfouf, 1996) and soil moisture’s control on transpiration
(Purdy et al., 2018; Szutu and Papuga, 2019) also increase
the uncertainty in ET. The abovementioned processes are not
independent of each other but interact in complex ways to
produce the end result.

4.1.2 Uncertainty in the ET estimation of arid and
semiarid regions

In arid and semiarid regions, benchmark products show
much larger differences in the magnitude of ET than LSMs
(Fig. S2). One cause of this phenomenon is the difference
in meteorological forcing. Remote sensing and machine-
learning datasets used different forcing data. For precipi-
tation, RF used the CRUNCEPv6 dataset, MTE used the
Global Precipitation Climatology Centre (GPCC) dataset,
MODIS used the Global Modeling and Assimilation Office
(GMAO) dataset, GLEAM used the Multi-Source Weighted-
Ensemble Precipitation (MSWEP) dataset, PML-CSIRO
used the Princeton Global Meteorological Forcing (PGF) and
the WATCH Forcing Data ERA-Interim (WFDEI) datasets,
and P-LSH used data derived from four independent sources.
As precipitation is the key climatic factor controlling ET in
arid and semiarid regions (Fig. 6), discrepancies between dif-
ferent forcing precipitation (Sun et al., 2018) may be the
main source of large uncertainty there. In comparison, the
uniform forcing data reduced the inter-model range in ET es-

timates from the TRENDY LSMs. Nevertheless, it is noted
that the congruence across LSM ET estimates does not nec-
essarily mean that they are the correct representation of ET.
The narrower inter-model range may suggest shared biases.
All remote sensing models and machine-learning algorithms
except GLEAM do not explicitly take the effects of soil mois-
ture into account (Table S1). Given that soil moisture is piv-
otal to both canopy conductance and soil evaporation in arid
and semiarid regions (A et al., 2019; De Kauwe et al., 2015;
Medlyn et al., 2015; Purdy et al., 2018), the lack of soil mois-
ture information also increases the bias in ET estimation. In
addition, the accuracy of remote sensing data itself is also
an uncertainty source. The retrieval of key land surface vari-
ables, such as the leaf area index and surface temperature, is
influenced by vegetation architecture, solar zenith angle and
satellite observational angle, particularly over heterogeneous
surface (Norman and Becker, 1995).

4.1.3 Uncertainty in the ET IAV in the Southern
Hemisphere

In regions south of 20◦ S (including Australia, southern
Africa and southern South America), the ET IAV of remote
sensing models and machine-learning algorithms is lower
than that of LSMs (Figs. 4, 5), although their spatial patterns
are similar. In these regions, GLEAM, the only remote sens-
ing model that explicitly considers the effects of soil mois-
ture, has larger ET IAV than other remote sensing models
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and has similar ET IAV to LSMs (Fig. S4). This could imply
that most of the existing remote sensing models may under-
estimate ET IAV in the Southern Hemisphere because the ef-
fects of soil moisture are not explicitly considered. Machine-
learning algorithms show much lower IAV than other mod-
els (Figs. 4, S4). The main reason for this is that ET IAV is
partly neglected in the training process, as the magnitude of
ET IAV is usually smaller than the spatial and seasonal vari-
ability (Anav et al., 2015; Jung et al., 2019). Moreover, the
IAV of satellite-based key land surface variables such as the
LAI, fAPAR and surface temperature may be not reliable be-
cause of the effects of clouds, which, in turn, affects the esti-
mation of the IAV of satellite-based ET. It is noted that LSM
ET IAV shows large differences at latitudes south of 20◦ S
(Fig. 5). This divergence in ET IAV indicates that LSMs re-
quire better representation of the ET response to climate in
the Southern Hemisphere.

4.1.4 Uncertainty in the global ET trend

All three categories of ET models detected an overall increas-
ing trend in global terrestrial ET since the early 1980s, which
is in agreement with previous studies (Mao et al., 2015; Mi-
ralles et al., 2014; Zeng et al., 2018a, b, 2014; Zhang et al.,
2015; Y. Zhang et al., 2016). Benchmark products gener-
ally suggested stronger ET intensification than LSMs. The
weaker ET intensification in LSMs may be induced by the
response of stomatal conductance to the increasing atmo-
spheric CO2 concentration. Increasing CO2 affects ET in two
ways: on the one hand, increasing CO2 can effectively reduce
stomatal conductance and, thus, decrease transpiration (Heij-
mans et al., 2001; Leipprand and Gerten, 2006; Swann et al.,
2016); on the other hand, it can increase vegetation produc-
tivity and, thus, increase LAI. For benchmarks, the second
effect could be captured by remotely sensed LAI, NDVI or
fAPAR, whereas the first effect was neglected by all models
except P-LSH (Zhang et al., 2015). In contrast, both effects
were modeled in all TRENDY LSMs.

LAI dynamics have significant influences on ET. The in-
creased LAI trend (greening) since the early 1980s has been
reported by previous studies (Mao et al., 2016; Zhu et al.,
2016) and has also been confirmed by remote sensing data
and all of the TRENDY LSMs used in this study (Table 2,
Fig. S5). Zhang et al. (2015) found that the increasing trend
of global terrestrial ET from 1982 to 2013 was mainly driven
by an increase in the LAI and the enhanced atmosphere wa-
ter demand. Using a land–atmosphere coupled global cli-
mate model (GCM), Zeng et al. (2018b) further estimated
that global LAI increased by about 8 %, resulting in an in-
crease of 0.40± 0.08 mm yr−2 in global ET (contributing to
55%± 25 % of the ET increase). This number is close to the
estimates of ensemble LSMs (0.37±0.18 mm yr−2). In com-
parison, the remote sensing models and machine-learning
algorithms used in this study suggested smaller greening-
induced ET increases. It is noted that TRENDY LSMs still

showed a larger discrepancy in terms of the effect of vege-
tation greening on terrestrial ET than remote sensing phys-
ical models (Table 2) due to the significant differences in
the LAI trend (1.74–13.63× 10−3 m2 m−2 yr−1) and in the
sensitivity of ET to LAI (4.04–217.39 mm yr−2 m−2 m−2).
Uncertainties in the LAI trend may arise from inappropriate
carbon allocations and deficiencies in responding to water
deficits (Anav et al., 2013; Hu et al., 2018; Murray-Tortarolo
et al., 2013; Restrepo-Coupe et al., 2017). Additionally, for
machine-learning algorithms, the results from insufficient
long-term in situ measurements and sparse observations in
tropical, boreal and arid regions imply that there are likely
deficiencies in representing the temporal variations.

4.1.5 Lack of knowledge of the effects of irrigation

Irrigation accounts for about 90 % of human consump-
tive water use and largely affects ET in irrigated crop-
lands (Siebert et al., 2010). Global water withdrawals for
irrigation were estimated to be within the range of 1161–
3800 km3 yr−1 around the year 2000, and they largely in-
creased during the period from 2000 to 2014 (Chen et al.,
2019). However, none of the remote-sensing-based physi-
cal models and machine-learning algorithms explicitly ac-
counted for the effects of irrigation on ET, although these
effects could be taken into account to some extent by using
observed LAI, NDVI or fAPAR to drive the models (Zhang
et al., 2015). Considering that annual ET may surpass annual
precipitation in cropland areas, Y. Zhang et al. (2016) only
used the Budyko hydrometeorological model to constrain the
PML-CSIRO model in grids covered by non-crop vegetation.
However, the process of irrigation affecting evaporation was
still not taken into consideration. For TRENDY LSMs, only
2 of 14 models (DLEM and ISAM) included irrigation pro-
cesses (Le Quéré et al., 2018). Therefore, the effects of ir-
rigation are largely neglected in existing global ET datasets,
which reduces the accuracy of local ET estimates in regions
with a large proportion of irrigated cropland.

4.1.6 ET variability across the precipitation gradient
and its planetary boundary

Precipitation is the source of terrestrial ET. According to
Fig. 9a, the vast majority of models agree that ET has the
largest IAV in regions with annual precipitation between 700
and 1000 mm, although the magnitude of ET IAV has sub-
stantial discrepancies among different models. The low ET
IAV in arid and semiarid regions does not mean that ET is
stable in these regions. In fact, ET has the largest coefficient
of variation (CoV – the ratio of ET standard deviation to ET
mean value) in arid regions, and all models show a clear neg-
ative trend in the CoV with increasing precipitation (Fig. 9b).
This is mainly caused by the large CoV of precipitation in
arid regions (Fatichi et al., 2012).
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Figure 9. Interannual variability (a) and the coefficient of variation (b) of ET for each 50 mm interval of mean annual precipitation.

In comparison, terrestrial ET shows a much lower IAV
at the global scale (Table 2), with values ranging from 4.8
to 12.2 mm yr−1 (1 standard deviation), which only equates
to 1.0 %–1.8 % of the global annual mean ET. The model
results suggest that global terrestrial ET stabilizes at about
6.74×104 km3 yr−1 (603 mm yr−1), which is close to previ-
ous estimates (Alton et al., 2009; Mueller et al., 2011; Oki
and Kanae, 2006; Zeng et al., 2012). The stability of global
terrestrial ET is probably based on partitioning the solar con-
stant and suggests that droughts in one place are balanced
by excess rain in other places; thus, it all evens out at a
global scale. This implies that ET also has a potential plan-
etary boundary, a suggestion made by Running (2012) on
net primary production (NPP) as a planetary boundary. ET
integrates four aspects of the current planetary boundaries
defined by Steffen et al. (2015): climate change, freshwater
use, land-system change and biochemical flows. Given the
importance of ET with respect to linking terrestrial water,
carbon, nutrient and energy cycles, more studies on the ET
planetary boundary are needed in the context of intensifying

global change and increasing anthropogenic perturbations to
the Earth system.

In short, the multi-model intercomparison indicates that
considerable uncertainty exists in both the temporal and spa-
tial variations in global ET estimates, although a large por-
tion of models adopt similar ET algorithms (Table 1). The
major uncertainty source is different for different types of
models and regions. The uncertainty is induced by multi-
ple factors, including problems pertinent to parameteriza-
tion of land processes, lack of in situ measurements, remote
sensing acquisition, scaling effects and meteorological forc-
ing. Based on the results of different approaches, we sug-
gest that global terrestrial ET also has a potential planetary
boundary, with the value being about 6.74× 104 km3 yr−1

(603 mm yr−1), which is consistent with previous estimates.
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4.2 Recommendations for future development

4.2.1 Remote-sensing-based physical methods

Over the past few decades, the development of remote
sensing technologies has contributed to a boom in vari-
ous ET estimation methods. However, there is still much
room for remote sensing technologies to improve (Fisher et
al., 2017). The development of new platforms and sensors
that have improved global spatiotemporal coverage and us-
ing multiband, multisource remote sensing data are the key
points. Planned or newly launched satellites, such as NASA’s
GRACE Follow-On (GRACE-FO) mission and the ECOsys-
tem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS) mission, will improve the accuracy
of terrestrial ET estimates. ECOSTRESS’s thermal infrared
(TIR) multispectral scanner is capable of monitoring diurnal
temperature patterns at high resolutions, which provides in-
sights into plant response to water stress as well as the means
to understand sub-daily ET dynamics (Hulley et al., 2017).
GRACE Follow-On observations can be used to constrain
subsurface lateral water transfers, which helps to correct soil
moisture and subsequently improves the accuracy of ET esti-
mates (Rouholahnejad and Martens, 2018). Moreover, build-
ing integrated methods that fuse different ET estimates or the
upstream satellite-based biophysical variables from different
platforms and the other forcing data will be helpful to im-
prove the accuracy and spatiotemporal coverage of ET (Ke
et al., 2016; Ma et al., 2018; Semmens et al., 2016).

The theories and retrieval algorithms of ET and the related
key biophysical variables also need to be further improved.
For example, the method for calculating canopy conductance
may be improved by integrating remote-sensing-based solar-
induced chlorophyll fluorescence (SIF) data. SIF data from
existing Global Ozone Monitoring Experiment-2 (GOME-
2), Orbiting Carbon Observatory-2 (OCO-2) and TROPO-
spheric Monitoring Instrument (TROPOMI) satellite instru-
ments as well as the forthcoming OCO-3 and Geostation-
ary Carbon Cycle Observatory (GeoCarb) satellites provide
a good opportunity to diagnose transpiration and to exam-
ine ET partitioning at multiple spatiotemporal scales (Pagán
et al., 2019; Stoy et al., 2019; Sun et al., 2017). Theoretical
advancements in nonequilibrium thermodynamics and max-
imum entropy production (MEP) could be incorporated into
the classical ET theories (Xu et al., 2019; K. Zhang et al.,
2016). In addition, quantifying the effects of CO2 fertiliza-
tion on stomatal conductance is pivotal for remote sensing
models to capture the long-term trend of terrestrial ET.

Most existing remote-sensing-based ET studies have fo-
cused on total ET; however, the partitioning of ET between
transpiration, soil evaporation, and canopy interception may
show significant divergence even though the total ET is ac-
curately estimated (Talsma et al., 2018b). In current remote-
sensing-based ET models, soil evaporation, which is sensi-
tive to precipitation events and soil moisture, is the compo-

nent with the largest error (Talsma et al., 2018a). Therefore,
incorporating the increasingly accessible satellite-based pre-
cipitation, soil moisture observations and soil property data
will contribute to the improvement of the soil evaporation
estimation. Meanwhile, the consideration of soil evaporation
under herbaceous vegetation and canopy will also reduce the
errors.

4.2.2 Machine-learning methods

It is well known that the capability of machine-learning algo-
rithms to provide accurate ET estimates largely depends on
the representativeness of the training datasets with respect
to describing ecosystem behaviors (Yao et al., 2017). As a
result, machine-learning algorithms may not perform well
outside the range of the data used for their training. Unfor-
tunately, long-term field observations in northern temperate
regions are still insufficient. This is an important cause of
the small spatial gradient and small IAV of machine-learning
ET. Given that remote sensing is capable of providing broad
coverage of key biophysical variables at reasonable spatial
and temporal resolutions, one way to overcome this chal-
lenge is to exclusively use remote sensing observations as
training data (Jung et al., 2019; Poon and Kinoshita, 2018).
Another simple way to make the IAV of machine-learning
ET more realistic is to normalize the yearly anomalies when
comparing them with ET estimates from LSMs and remote
sensing physical models (Jung et al., 2019). New machine-
learning techniques, including the extreme learning machine
and the adaptive neuro-fuzzy inference system, can be used
to improve the accuracy of ET estimation (Gocic et al., 2016;
Kişi and Tombul, 2013). Emerging deep-learning methods
such as recurrent neural network (RNN) and long short-term
memory (LSTM) have the potential to outcompete conven-
tional machine-learning methods in modeling ET time series
(Reichstein et al., 2018, 2019). Almost all machine-learning
datasets used precipitation rather than soil moisture as the
explanatory variable when training. However, soil moisture
(rather than precipitation) directly controls ET. As more and
more global remote-sensing-based soil moisture datasets be-
come available, using soil moisture products as input is ex-
pected to improve the accuracy of ET estimates, especially
for regions with sparse vegetation coverage (Xu et al., 2018).

4.2.3 Land surface models

In contrast to observation-based methods, LSMs are able to
project future changes in ET, and can disentangle the effects
of different drivers of ET through factorial analysis. How-
ever, results from LSMs are only as good as their parameter-
izations of complex land surface processes, which are limited
by our incomplete understanding of physical and biological
processes (Niu et al., 2011). Although TRENDY LSMs are
the state-of-the-art process-based global land surfaces mod-
els, improvements are still needed because several important
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processes are missing or not being appropriately parameter-
ized. Most of the TRENDY LSMs did not simulate processes
relevant to human management, including irrigation (Chen et
al., 2019) and the application of fertilizers (Mao et al., 2015),
or natural disturbances like wildfire (Poon and Kinoshita,
2018). Incorporating these processes into present LSMs is
critical, although the introduction of new model parameters
also potentially leads to an increase in a model’s uncertainty.

In light of the importance of soil water availability in con-
straining canopy conductance and dynamics, the accurate
representation of hydrological processes is a core task for
LSMs, particularly in dry regions. Integrating a dynamic root
water uptake function and hydraulic redistribution into the
LSM can significantly improve its performance with respect
to estimating seasonal ET and soil moisture (Li et al., 2012).
Moreover, other hydrological processes including groundwa-
ter (Decker, 2015), lateral flow (Rouholahnejad and Martens,
2018) and water vapor diffusion at the soil surface (Chang et
al., 2018) need to be simulated and correctly represented to
reproduce the dynamics of soil water and ET. As the canopy
LAI plays an important role in regulating ET, correctly simu-
lating vegetation dynamics is also critical. One way to do this
is to correct the initialization, distribution and parameteriza-
tion of vegetation phenology in LSMs (Murray-Tortarolo et
al., 2013; Zhang et al., 2019). An appropriate carbon alloca-
tion scheme and parameterization of vegetation’s response to
water deficits are also important for reproducing vegetation
dynamics (Anav et al., 2013).

5 Conclusion

In this study, we evaluated 20 global terrestrial ET estimates
including 4 from remote-sensing-based physical models, 2
from machine-learning algorithms and 14 from TRENDY
LSMs. The ensemble mean values of global terrestrial ET for
the three categories agreed well, with values ranging from
589.6 to 617.1 mm yr−1. All three categories detected an
overall increasing trend in global ET during the period from
1982 to 2011 and suggested a positive effect of vegetation
greening on ET intensification. However, the multi-model in-
tercomparison indicates that considerable uncertainties still
exist in both temporal and spatial variations in global terres-
trial ET estimates. LSMs showed significant differences in
the ET magnitude in tropical regions, especially in the Ama-
zon Basin, whereas benchmark ET products showed a larger
inter-model range in arid and semiarid regions than LSMs.
Trends in ET estimates also showed significant discrepan-
cies among LSMs. These uncertainties are induced by the
parameterization of land processes, meteorological forcings,
the lack of in situ measurements, remote sensing acquisi-
tion and scaling effects. Model developments and observa-
tional improvements provide two parallel pathways towards
improving the accuracy of global terrestrial ET estimation.

Code and data availability. TRENDYv6 data are avail-
able from Stephen Sitch (s.a.sitch@exeter.ac.uk) upon
reasonable request. MODIS ET data are available from
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
(Running, 2020). GLEAM ET are available from
https://www.gleam.eu/ (Miralles, 2020). Both model tree
ensemble and random forest ET data are available from
https://www.bgc-jena.mpg.de/geodb/projects/FileDetails.php
(Jung, 2020). P-LSH ET data are available from http://files.
ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution/
(K. E. Zhang, 2020). PML-CSIRO ET data are available
from https://data.csiro.au/dap/landingpage?pid=csiro:17375
(Y. Zhang, 2020). CRU-NCEPv8 data are available from Nico-
las Viovy upon reasonable request (email address: viovy@dsm-
mail.saclay.cea.fr). GIMMS LAI3gV1 data are available from
Ranga B. Myneni upon reasonable request (email address:
rmyneni@bu.edu). GIMMS NDVI3gV1 data are available from
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (Pinzon and
Tucker, 2020).
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