Bardossy, A.: Generating precipitation time series using simulated
annealing, Water Resour. Res., 34, 1737–1744, 1998.

Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial
resolution of rainfall measurements required for urban hydrology, J.
Hydrol., 299, 166–179, 2004.

Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modeling: a
review, Hydrol. Process., 9, 251–290, 1995.

Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of precipitation
and temperature across different climates and spatial scales, J. Hydrol.,
Regional studies, 21, 126–146, 2019.

Breinl, K., Strasser, U., Bates, P., and Kienberger, S.: A joint modelling
framework for daily extremes of river discharge and precipitation in urban
areas, J. Flood Risk Manag., 10, 97–114, 2015.

Burlando, P. and Rosso, R.: Scaling and multiscaling of
depth-duration-frequency curves for storm precipitation, J. Hydrol., 187,
45–64, 1996.

Callau Poduje, A. C. and Haberlandt, U.: Short time step continuous rainfall
modeling and simulation of extreme events, J. Hydrol., 552, 182–197, 2017.

Carsteanu, A. and Foufoula-Georgiou, E.: Assessing dependence among weights in
a multiplicative cascade model of temporal rainfall, J. Geophys. Res., 101, 26363–26370, 1996.

Cristiano, E., ten Veldhuis, M.-C., and van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review, Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, 2017.

Crosson, E. and Harrow, A. W.: Simulated Quantum Annealing Can Be Exponentially
Faster Than Classical Simulated Annealing, Proceedings of the 57th
Annual Symposium on Foundations of Computer Sciences, New Brunswick, NJ,
USA, ISSN 0272-5428, 2016.

Ding, J., Haberlandt, U., and Dietrich, J.: Estimation of instantaneous peak
flow from maximum daily flow: a comparison of three methods, Hydrol. Res.,
46, 671–688, 2015.

Dunkerley, D. L.: Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, https://doi.org/10.1002/hyp.7122, 2008.

DWA-A 531: Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer,
Technical guideline of the DWA, Hennef, 2012.

DWD: Climate Data Center – Climate observations in Germany, available at https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/, 2013.

Föt, A.: Optimization of a resampling-algorithm for the implementation
of spatial and temporal consistency in disaggregated time series, Bachelor
thesis, Institute of Hydrology and Water Resources Management, Faculty of
Civil Engineering and Geodesy, Leibniz Universität Hannover,
2015 (in German).

Güntner, A., Olsson, J., Calver, A., and Gannon, B.: Cascade-based disaggregation of continuous rainfall time series: the influence of climate, Hydrol. Earth Syst. Sci., 5, 145–164, https://doi.org/10.5194/hess-5-145-2001, 2001.

Handwerker, J.: Cell tracking with TRACE3D – a new algorithm, Atmos. Res.,
61, 15–34, 2002.

Heim, B., Rønnow, T. F., Isakov, S. V., and Troyer, M.: Quantum versus
classical annealing of Ising spin glasses, Science, 348, 215–217,
2015.

Hingray, B. and Ben Haha, M.: Statistical performance of various deterministic
and stochastic models for rainfall series disaggregation, Atmos. Res., 77,
152–175, 2005.

Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis, Cambridge
University Press, Cambridge, 1997.

Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM
data V4, International Centre for Tropical Agriculture (CIAT), available
at: http://srtm.csi.cgiar.org (last access: 10 August 2009), 2008.

Koutsoyiannis, D.: The Hurst phenomenon and fractional Gaussian noise made
easy, Hydrolog. Sci. J., 47, 573–595, 2009.

Koutsoyiannis, D. and Langousis, A.: “Precipitation.” Treatise on
water science, edited by: Wilderer, P. and Uhlenbrook, S., Vol. 2, Academic
Press, Oxford, 27–78, 2011.

Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation and adjusting
procedures on a Poisson cluster model, J. Hydrol., 246, 109–122, https://doi.org/10.1016/S0022-1694(01)00363-8, 2001.

Koutsoyiannis, D., Onof, C., and Wheater, H. S.: Multivariate rainfall
disaggregation at a fine time scale, Water Resour. Res., 39, 1173, https://doi.org/10.1029/2002WR001600, 2003.

Kumar, P., Guttarp, P., and Foufoula-Georgiou, E.: A probability-weighted moment
test to assess simple scaling, Stoch. Hydrol. Hydraul., 8, 173–183, 1994.

Legler, J.: Optimization of autocorrelation in disaggregated time series and
validation with an urban hydrological model, Master thesis, Institute of
Hydrology and Water Resources Management, Faculty of Civil Engineering and
Geodesy, Leibniz Universität Hannover, 2017 (in German).

Licznar, P., Schmitt, T. G., and Rupp, D. E.: Distributions of Microcanonical
Cascade Weights of Rainfall at Small Timescales, Acta Geophys., 59,
1013–1043, 2011.

Licznar, P., De Michele, C., and Adamowski, W.: Precipitation variability within an urban monitoring network via microcanonical cascade generators, Hydrol. Earth Syst. Sci., 19, 485–506, https://doi.org/10.5194/hess-19-485-2015, 2015.

Lisniak, D., Franke, J., and Bernhofer, C.: Circulation pattern based parameterization of a multiplicative random cascade for disaggregation of observed and projected daily rainfall time series, Hydrol. Earth Syst. Sci., 17, 2487–2500, https://doi.org/10.5194/hess-17-2487-2013, 2013.

Lombardo, F., Volpi, E., and Koutsoyiannis, D.: Rainfall downscaling in time:
theoretical and empirical comparison between multifractal and
Hurst-Kolmogorv discrete random cascades, Hydrolog. Sci. J., 57,
1052–1066, 2012.

Lombardo, F., Volpi, E., Koutsoyiannis, D., and Papalexiou, S. M.: Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrol. Earth Syst. Sci., 18, 243–255, https://doi.org/10.5194/hess-18-243-2014, 2014.

Lombardo, F., Volpi, E., Koutsoyiannis, D., and Serinaldi, F.: A theoretical
consistent stochastic cascade for temporal disaggregation of intermittent
rainfall, Water Resour. Res., 53, 4586–4605, 2017.

Mandelbrot, B.: Intermittent turbulence in self-similar cascades –
divergence of high moments and dimension of carrier, J. Fluid Mech., 62
331–358, 1974.

Marshak, A., Davis, A., Cahalan, R., and Wiscombe, W.: Bounded cascade models as
nonstationary multifractals, Phys. Rev. E, 49, 55–69, 1994.

Menabde, M. and Sivapalan, M.: Modeling of rainfall time series and extremes
using bounded random cascades and levy-stable distributions, Water Resour.
Res., 36, 3293–3300, https://doi.org/10.1029/2000WR900197, 2000.

Menabde, M., Harris, D., Seed, A., Austin, G., and Stow, D.: Multiscaling
properties of rainfall and bounded random cascades, Water Resour. Res., 33,
2823–2830, 1997.

Molnar, P. and Burlando, P.: Preservation of rainfall properties in stochastic
disaggregation by a simple random cascade model, Atmos. Res., 77,
137–151, 2005.

Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation with a
cascade model: from single-station disaggregation to spatial rainfall, J.
Hydrol. Eng., 20, 04015026, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195, 2015.

Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation using a
multiplicative cascade model for spatial application in urban hydrology, J.
Hydrol., 556, 847–864, 2018.

Müller-Thomy, H. and Sikorska-Senoner, A.: Does the complexity in temporal
precipitation disaggregation matter for a lumped hydrological model?,
Hydrolog. Sci. J., 64, 1453–1471, 2019.

Müller-Thomy, H., Wallner, M., and Förster, K.: Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?, Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018, 2018.

Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R. D., Reinoso-Rondinel,
R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., Assel, J. v., Kroll,
S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I.,
Onof, C., Willems, P., and ten Veldhuis, M.-C.: Impact of Spatial and Temporal
Resolution of Rainfall Inputs on Urban Hydrodynamic Modelling Outputs: A
Multi-Catchment Investigation, J. Hydrol., 531, 389–407, 2015.

Olsson, J.: Evaluation of a scaling cascade model for temporal rain- fall disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30, https://doi.org/10.5194/hess-2-19-1998, 1998.

Over, T. M. and Gupta, V. K.: Statistical Analysis of mesoscale rainfall:
dependence of a random cascade generator on large-scale forcing, J. Appl.
Meteorol., 33, 1526–1542, 1994.

Paschalis, A., Molnar, P., and Burlando, P.: Temporal dependence structure in
weights in a multiplicative cascade model for precipitation, Water Resour.
Res., 48, W01501, https://doi.org/10.1029/2011WR010679, 2012.

Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.: On temporal stochastic
modeling of precipitation, nesting models across scales, Adv. Water Resour.,
63, 152–166, 2014.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.

Pohle, I., Niebisch, M., Müller, H., Schümberg, S., Zha,
T., Maurer, T., and Hinz, C.: Coupling Poisson rectangular pulse and
multiplicative micro-canonical random cascade models to generate sub-daily
precipitation time series, J. Hydrol., 562, 50–70, 2018.

Rupp, D. E., Keim, R. F., Ossiander, M., Brugnach, M., and Selker, J.: Time
scale and intensity dependency in multiplicative cascades for temporal
rainfall disaggregation, Water Resour. Res., 45, W07409, https://doi.org/10.1029/2008WR007321, 2009.

Schilling, W.: Univariate versus Multivariate Rainfall Statistics –
Problems and Potentials (A Discussion), Water Sci. Technol., 16, Copenhagen,
Denmark, 139–146, 1984.

Schilling, W.: Rainfall data for urban hydrology: what do we need?, Atmos.
Res., 27, 5–21, 1991.

Veneziano, D., Langousis, A., and Furcolo, P.: Multifractality and rainfall
extremes: A review, Water Resour. Res., 42, W06D15, https://doi.org/10.1029/2005WR004716, 2006.

Serinaldi, F.: Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models, Nonlin. Processes Geophys., 17, 697–714, https://doi.org/10.5194/npg-17-697-2010, 2010.

Storm, R.: Wahrscheinlichkeitsrechnung, mathematische Statistik und
statistische Qualitätskontrolle, VEB Fachbuchverlag, Leipzig, 9th
edition, 360 pp., 1988.

Svensson, C., Olsson, J., and Berndtsson, R.: Multifractal properties of daily
rainfall in two different climates, Water Resour. Res., 32, 2463–2472,
1996.

Westra, S., Mehrotra, R., Sharma, A., and Srikanthan, R.: Continious rainfall
simulation: 1. A regionalized subdaily disaggregation approach, Water
Resour. Res., 48, W01535, https://doi.org/10.1029/2011WR010489, 2012.

Wójcik, R. and Buishand, T. A.: Simulation of 6-hourly rainfall and
temperature by two resampling schemes, J. Hydrol., 273, 69–80, 2003.

Yu, P.-S., Yang, T.-C., and Lin, C.-S.: Regional rainfall intensity formulas
based on scaling property of rainfall, J. Hydrol., 295, 108–123, 2014.