Articles | Volume 24, issue 1
https://doi.org/10.5194/hess-24-169-2020
https://doi.org/10.5194/hess-24-169-2020
Research article
 | 
14 Jan 2020
Research article |  | 14 Jan 2020

Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation

Hannes Müller-Thomy

Related authors

Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1948,https://doi.org/10.5194/egusphere-2023-1948, 2023
Short summary
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023,https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022,https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018,https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Flood risk assessment for Indian sub-continental river basins
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024,https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024,https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024,https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024,https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary

Cited articles

Bardossy, A.: Generating precipitation time series using simulated annealing, Water Resour. Res., 34, 1737–1744, 1998. 
Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, 2004. 
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modeling: a review, Hydrol. Process., 9, 251–290, 1995. 
Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of precipitation and temperature across different climates and spatial scales, J. Hydrol., Regional studies, 21, 126–146, 2019. 
Breinl, K., Strasser, U., Bates, P., and Kienberger, S.: A joint modelling framework for daily extremes of river discharge and precipitation in urban areas, J. Flood Risk Manag., 10, 97–114, 2015. 
Download
Short summary
Simulation of highly dynamic floods requires high-resolution rainfall time series. Observed time series of that kind are often too short; rainfall generation is the only solution. The applied rainfall generator tends to underestimate the process memory of the rainfall. By modifications of the rainfall generator and a subsequent optimisation method the process memory is improved significantly. Flood simulations are expected to be more trustable using the rainfall time series generated like this.