Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 24, issue 1
Hydrol. Earth Syst. Sci., 24, 169–188, 2020
https://doi.org/10.5194/hess-24-169-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 24, 169–188, 2020
https://doi.org/10.5194/hess-24-169-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Jan 2020

Research article | 14 Jan 2020

Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation

Hannes Müller-Thomy
Related authors  
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018,https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Related subject area  
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Hybrid climate datasets from a climate data evaluation system and their impacts on hydrologic simulations for the Athabasca River basin in Canada
Hyung-Il Eum and Anil Gupta
Hydrol. Earth Syst. Sci., 23, 5151–5173, https://doi.org/10.5194/hess-23-5151-2019,https://doi.org/10.5194/hess-23-5151-2019, 2019
Short summary
Evaluation of drought representation and propagation in regional climate model simulations across Spain
Anaïs Barella-Ortiz and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 23, 5111–5131, https://doi.org/10.5194/hess-23-5111-2019,https://doi.org/10.5194/hess-23-5111-2019, 2019
Short summary
Groundwater influence on soil moisture memory and land–atmosphere fluxes in the Iberian Peninsula
Alberto Martínez-de la Torre and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 23, 4909–4932, https://doi.org/10.5194/hess-23-4909-2019,https://doi.org/10.5194/hess-23-4909-2019, 2019
Short summary
Comparison of approaches to interpolating climate observations in steep terrain with low-density gauging networks
Juan Ossa-Moreno, Greg Keir, Neil McIntyre, Michela Cameletti, and Diego Rivera
Hydrol. Earth Syst. Sci., 23, 4763–4781, https://doi.org/10.5194/hess-23-4763-2019,https://doi.org/10.5194/hess-23-4763-2019, 2019
Short summary
High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach
Yanping Li, Zhenhua Li, Zhe Zhang, Liang Chen, Sopan Kurkute, Lucia Scaff, and Xicai Pan
Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019,https://doi.org/10.5194/hess-23-4635-2019, 2019
Short summary
Cited articles  
Bardossy, A.: Generating precipitation time series using simulated annealing, Water Resour. Res., 34, 1737–1744, 1998. 
Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, 2004. 
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modeling: a review, Hydrol. Process., 9, 251–290, 1995. 
Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of precipitation and temperature across different climates and spatial scales, J. Hydrol., Regional studies, 21, 126–146, 2019. 
Breinl, K., Strasser, U., Bates, P., and Kienberger, S.: A joint modelling framework for daily extremes of river discharge and precipitation in urban areas, J. Flood Risk Manag., 10, 97–114, 2015. 
Publications Copernicus
Download
Short summary
Simulation of highly dynamic floods requires high-resolution rainfall time series. Observed time series of that kind are often too short; rainfall generation is the only solution. The applied rainfall generator tends to underestimate the process memory of the rainfall. By modifications of the rainfall generator and a subsequent optimisation method the process memory is improved significantly. Flood simulations are expected to be more trustable using the rainfall time series generated like this.
Simulation of highly dynamic floods requires high-resolution rainfall time series. Observed time...
Citation