Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2323-2020
https://doi.org/10.5194/hess-24-2323-2020
Research article
 | 
08 May 2020
Research article |  | 08 May 2020

Basin-scale multi-objective simulation-optimization modeling for conjunctive use of surface water and groundwater in northwest China

Jian Song, Yun Yang, Xiaomin Sun, Jin Lin, Ming Wu, Jianfeng Wu, and Jichun Wu

Related authors

A new criterion for determining the representative elementary volume of translucent porous media and inner contaminant
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020,https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Experimental study on mechanism for pumping-induced land subsidence
Yun Zhang, Guofeng He, Jichun Wu, Zhiduo Zhu, Xuexin Yan, and Tianliang Yang
Proc. IAHS, 382, 387–390, https://doi.org/10.5194/piahs-382-387-2020,https://doi.org/10.5194/piahs-382-387-2020, 2020
Short summary
Time-varying copula and design life level-based nonstationary risk analysis of extreme rainfall events
Pengcheng Xu, Dong Wang, Vijay P. Singh, Yuankun Wang, Jichun Wu, Huayu Lu, Lachun Wang, Jiufu Liu, and Jianyun Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-358,https://doi.org/10.5194/hess-2019-358, 2019
Revised manuscript not accepted
Short summary
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018,https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Numerical simulation of earth fissures due to groundwater withdrawal
Z. Wang, Y. Zhang, J. Wu, J. Yu, and X. Gong
Proc. IAHS, 372, 395–398, https://doi.org/10.5194/piahs-372-395-2015,https://doi.org/10.5194/piahs-372-395-2015, 2015

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023,https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023,https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Three-dimensional hydrogeological parametrization using sparse piezometric data
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022,https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary

Cited articles

Ba, W. L., Du, P. F., Liu, T., Bao, A. M., Luo, M., Hassan, M., and Qin, C. X.: Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China, J. Arid Land, 10, 905–920, https://doi.org/10.1007/s40333-018-0068-0, 2018. 
Bader, J. and Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., 19, 45–76, https://doi.org/10.1162/EVCO_a_00009, 2011. 
Beh, E. H. Y., Zheng, F. F., Dandy, G. C., Maier, H. R., and Kapelan, Z.: Robust optimization of water infrastructure planning under deep uncertainty using metamodels, Environ. Model. Softw., 93, 92–105, https://doi.org/10.1016/j.envsoft.2017.03.013, 2017. 
Chen, B. L., Zeng, W. H., Lin, Y. B., and Zhang, D. F.: A new local search-based multiobjective optimization algorithm, IEEE T. Evol. Comput., 19, 50–73, https://doi.org/10.1109/TEVC.2014.2301794, 2015. 
Chen, Y. N., Chen, Y. P., Xu, C. C., Ye, Z. X., Li, Z. Q., Zhu, C. G., and Ma, X. D.: Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China, Hydrol. Process., 24, 170–177, https://doi.org/10.1002/hyp.7429, 2010. 
Download
Short summary
We proposed a novel many-objective simulation-optimization framework for conjunctive use of surface water and groundwater in Yanqi Basin, northwest China. The management model involving socioeconomic and environmental objectives was constructed to explore optimal water-use schemes. Three runoff scenarios were then specified to quantify the effect of runoff reduction related to climate change on water management. Results provide Pareto-optimal solutions for basin-scale water management.