Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2343-2020
https://doi.org/10.5194/hess-24-2343-2020
Research article
 | 
08 May 2020
Research article |  | 08 May 2020

Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees

Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023,https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023,https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022,https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary

Cited articles

Amiri, E.: Forecasting daily river flows using nonlinear time series models, J. Hydrol., 527, 1054–1072, https://doi.org/10.1016/j.jhydrol.2015.05.048, 2015. a
Amorocho, J. and Espildora, B.: Entropy in the assessment of uncertainty in hydrologic systems and models, Water Resour. Res., 9, 1511–1522, https://doi.org/10.1029/WR009i006p01511, 1973. a
Badrzadeh, H., Sarukkalige, R., and Jayawardena, A.: Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting, J. Hydrol., 507, 75–85, https://doi.org/10.1016/j.jhydrol.2013.10.017, 2013. a, b, c, d
Bennett, J. C., Wang, Q. J., Li, M., Robertson, D. E., and Schepen, A.: Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model, Water Resour. Res., 52, 8238–8259, https://doi.org/10.1002/2016WR019193, 2016. a
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011. a
Download
Short summary
Inflow forecasting plays an essential role in reservoir management and operation. To improve the accuracy of multistep-ahead daily inflow forecasting, the paper develops a new hybrid inflow forecast framework using ERA-Interim data. We find that the framework significantly enhances the accuracy of inflow forecasting at lead times of 4–10 d compared with widely used and mature methods. This research provides a reference for operational inflow forecasting in remote regions.