Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2399-2020
https://doi.org/10.5194/hess-24-2399-2020
Research article
 | 
12 May 2020
Research article |  | 12 May 2020

A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China

Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by editor) (13 Mar 2020) by Pieter van der Zaag
AR by zailin Huo on behalf of the Authors (17 Mar 2020)  Author's response    Manuscript
ED: Publish as is (05 Apr 2020) by Pieter van der Zaag
Download
Short summary
Due to increasing food demand and limited water resources, the quantification of the irrigation water productivity (IWP) is critical. Hydrological processes in irrigated areas differ in different watersheds owing to different irrigation–drainage activities, and this is more complex with shallow groundwater. Considering the complexity of the IWP, we developed a regional IWP model to simulate its spatial distribution; this informs irrigation managers on where they can improve IWP and save water.