Arnbjerg-Nielsen, K.: Quantification of climate change effects on extreme
precipitation used for high resolution hydrologic design, Urban Water
J., 9, 57–65, https://doi.org/10.1080/1573062X.2011.630091, 2012. a, b

Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A.,
Bülow Gregersen, I., Madsen, H., and Nguyen, V.-T.-V.: Impacts of climate
change on rainfall extremes and urban drainage systems: a review, Water
Sci. Technol., 68, 16–28, https://doi.org/10.2166/wst.2013.251, 2013. a

Burlando, P. and Rosso, R.: Stochastic Models of Temporal Rainfall:
Reproducibility, Estimation and Prediction of Extreme Events, in: Stochastic
Hydrology and its Use in Water Resources Systems Simulation and Optimization,
edited by: Marco, J. B., Harboe, R., and Salas, J. D., Springer
Netherlands, Dordrecht, the Netherlands, 137–173, https://doi.org/10.1007/978-94-011-1697-8_7, 1993. a

Connolly, R., Schirmer, J., and Dunn, P.: A daily rainfall disaggregation
model, Agr. Forest Meteorol., 92, 105–117,
https://doi.org/10.1016/S0168-1923(98)00088-4,
1998. a

Cowpertwait, P. S. P.: A Poisson-cluster model of rainfall: some high-order
moments and extreme values, P. Roy. Soc. Lond. A Mat., 454, 885–898,
https://doi.org/10.1098/rspa.1998.0191,
1998. a, b, c

Cross, D., Onof, C., and Winter, H.: Ensemble simulation of future rainfall
extremes with temperature dependent censored simulation, Adv. Water Resour., 136, 103479, https://doi.org/10.1016/j.advwatres.2019.103479, 2020. a

Efstratiadis, A., Koutsoyiannis, D., and Polytechniou, H.: An evolutionary
annealing-simplex algorithm for global optimisation of water resource
systems, Proceedings of the Fifth International Conference on Hydroinformatics, 1–5 July 2002, Cardiff, UK, International Water Association, https://doi.org/10.13140/RG.2.1.1038.6162, 2002. a

Evin, G. and Favre, A.-C.: A new rainfall model based on the Neyman-Scott
process using cubic copulas, Water Resour. Res., 44, W03433,
https://doi.org/10.1029/2007WR006054,
2008. a

Jesus, J. and Chandler, R. E.: Estimating functions and the generalized method
of moments, Interface Focus, 1, 871–885, https://doi.org/10.1098/rsfs.2011.0057, 2011. a

Kaczmarska, J., Isham, V., and Onof, C.: Point process models for
fine-resolution rainfall, Hydrolog. Sci. J., 59, 1972–1991,
https://doi.org/10.1080/02626667.2014.925558, 2014. a, b, c, d, e, f, g, h, i, j, k, l, m, n

Kaczmarska, J. M., Isham, V. S., and Northrop, P.: Local generalised method of
moments: an application to point process-based rainfall models,
Environmetrics, 26, 312–325, https://doi.org/10.1002/env.2338, 2015. a

Khaliq, M. and Cunnane, C.: Modelling point rainfall occurrences with the
modified Bartlett-Lewis rectangular pulses model, J. Hydrol., 180,
109–138, https://doi.org/10.1016/0022-1694(95)02894-3,
1996. a, b

Kim, D. and Onof, C.: A stochastic rainfall model that can reproduce important rainfall properties across the timescales from several minutes to a decade, J. Hydrol., in review, 2020. a

Kim, J.-G., Kwon, H.-H., and Kim, D.: A hierarchical Bayesian approach to the
modiﬁed Bartlett-Lewis rectangular pulse model for a joint estimation of
model parameters across stations, J. Hydrol., 544, 210–223,
https://doi.org/10.1016/j.jhydrol.2016.11.031,
2017. a

Kossieris, P., Makropoulos, C., Onof, C., and Koutsoyiannis, D.: A rainfall
disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis
based model with adjusting procedures, J. Hydrol., 556, 980–992,
https://doi.org/10.1016/j.jhydrol.2016.07.015,
2018. a

Koutsoyiannis, D. and Mamassis, N.: On the representation of hyetograph characteristics by stochastic rainfall models, J. Hydrol., 251, 65–87, https://doi.org/10.1016/S0022-1694(01)00441-3,
2001. a

Marani, M.: On the correlation structure of continuous and discrete point
rainfall, Water Resour. Res., 39, 1128, https://doi.org/10.1029/2002WR001456,
2003. a, b

Menabde, M. and Sivapalan, M.: Modeling of rainfall time series and extremes
using bounded random cascades and levy-stable distributions, Water Resour.
Res., 36, 3293–3300, https://doi.org/10.1029/2000WR900197,
2000. a

Montfort, M. A. and Witter, J. V.: The Generalized Pareto distribution applied
to rainfall depths, Hydrolog. Sci. J., 31, 151–162,
https://doi.org/10.1080/02626668609491037, 1986. a

Onof, C. and Arnbjerg-Nielsen, K.: Quantification of anticipated future changes in high resolution design rainfall for urban areas, Atmos. Res., 92,
350–363, https://doi.org/10.1016/j.atmosres.2009.01.014, 2009. a, b

Onof, C. and Wheater, H. S.: Modelling of British rainfall using a random
parameter Bartlett-Lewis Rectangular Pulse Model, J. Hydrol., 149,
67–95, https://doi.org/10.1016/0022-1694(93)90100-N, 1993. a, b, c

Onof, C. and Wheater, H. S.: Improvements to the modelling of British rainfall using a modified Random Parameter Bartlett-Lewis Rectangular Pulse Model, J. Hydrol., 157, 177–195, https://doi.org/10.1016/0022-1694(94)90104-X,
1994. a

Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S., and Isham, V.: Rainfall modelling using Poisson-cluster processes: a review of
developments, Stoch. Env. Res. Risk A., 14,
384–411, https://doi.org/10.1007/s004770000043, 2000. a, b, c

Onof, C., Meca-Figueras, T., Kaczmarska, J., Chandler, R., and Hege, L.:
Modelling rainfall with a Bartlett–Lewis process: third order moments,
proportion dry, and a truncated random parameter version, Tech. rep.,
Imperial College London, London, UK, 2013. a, b

Park, J., Onof, C., and Kim, D.: A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales, Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019, 2019. a, b

Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.: On temporal
stochastic modeling of precipitation, nesting models across scales, Adv. Water Resour., 63, 152–166, https://doi.org/10.1016/j.advwatres.2013.11.006,
2014. a

Ramesh, N. I.: Statistical analysis on Markov-modulated Poisson processes,
Environmetrics, 6, 165–179, https://doi.org/10.1002/env.3170060207,
1995.
a

Ramesh, N. I., Garthwaite, A. P., and Onof, C.: A doubly stochastic rainfall
model with exponentially decaying pulses, Stoch. Env. Res. Risk A., 32, 1645–1664, https://doi.org/10.1007/s00477-017-1483-z, 2018. a

Rodriguez-Iturbe, I., Cox, D. R., and Isham, V.: Some models for rainfall based on stochastic point processes, P. Roy. Soc. Lond. A Mat., 410, 269–288,
https://doi.org/10.1098/rspa.1987.0039,
1987. a, b, c, d

Rodriguez-Iturbe, I., Cox, D. R., and Isham, V.: A point process model for
rainfall: further developments, P. Roy. Soc. Lond. A Mat., 417, 283–298,
https://doi.org/10.1098/rspa.1988.0061,
1988. a, b, c, d, e, f

Verhoest, N., Troch, P. A., and Troch, F. P. D.: On the applicability of
Bartlett–Lewis rectangular pulses models in the modeling of design storms
at a point, J. Hydrol., 202, 108–120,
https://doi.org/10.1016/S0022-1694(97)00060-7,
1997. a, b

Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras, T.,
and Jameleddine, S.: Are stochastic point rainfall models able to preserve
extreme flood statistics?, Hydrol. Process., 24, 3439–3445,
https://doi.org/10.1002/hyp.7867,
2010. a, b, c

Wang, L., Onof, C., and Maksimovic, C.: Reconstruction of sub-daily rainfall sequences using multinomial multiplicative cascades, Hydrol. Earth Syst. Sci. Discuss., 7, 5267–5297, https://doi.org/10.5194/hessd-7-5267-2010, 2010. a

Wheater, H. S., Isham, V. S., Chandler, R. E., Onof, C., Bellone, E.,
Prudhomme, C., and Crooks, S.: Improved methods for national spatial-temporal
rainfall and evaporation modelling for BSM, Tech. rep., DEFRA, available at: http://randd.defra.gov.uk/Document.aspx?Document=FD2105_6227_PR.pdf (last access: 11 October 2019), 2006. a, b