Andersson, J. E., Ekman, L., Gustafsson, E., Nordqvist, R., and Tiren, S.:
Hydraulic interference tests and tracer tests within the Brändöan area, Finnsjon study site, the fracture zone project-Phase 3, Technical Report 89-12, Sweden Nuclear Fuel and Waste Management Company, Stockholm, 1988.

Attinger, S.: Generalized coarse graining procedures for flow in porous
media, Comput. Geosci., 7, 253–273, https://doi.org/10.1023/B:COMG.0000005243.73381.e3, 2003.

Barahona-Palomo, M., Riva, M., Sanchez-Vila, X., Vazquez-Sune, E., and
Guadagnini, A.: Quantitative comparison of impeller flowmeter and particle-size distribution techniques for the characterization of hydraulic
conductivity variability, Hydrogeol. J., 19, 603–612,
https://doi.org/10.1007/s10040-011-0706-5, 2011.

Beckie, R.: A comparison of methods to determine measurement support
volumes, Water Resour. Res., 37, 925–936, https://doi.org/10.1029/2000WR900366, 2001.

Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., and Ay, N.: Quantifying
unique information, Entropy, 16, 2161–2183, https://doi.org/10.3390/e16042161, 2014.

Bianchi, M. and Pedretti, D.: Geological entropy and solute transport in
heterogeneous porous media, Water Resour. Res., 53, 4691–4708,
https://doi.org/10.1002/2016WR020195, 2017.

Bianchi, M. and Pedretti, D.: An entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media, Water Resour. Res., 54, 4432–4448, https://doi.org/10.1029/2018WR022827, 2018.

Boso, F. and Tartakovsky, D. M.: Information-theoretic approach to bidirectional scaling, Water Resour. Res., 54, 4916–4928,
https://doi.org/10.1029/2017WR021993, 2018.

Brace, W. F.: Permeability of crystalline rocks: New in situ measurements, J. Geophys. Res., 89, 4327–4330, https://doi.org/10.1029/JB089iB06p04327, 1984.

Butera, I., Vallivero, L., and Rodolfi, L.: Mutual information analysis to
approach nonlinearity in groundwater stochastic fields, Stoch. Environ. Res.
Risk Assess., 32, 2933–2942, https://doi.org/10.1007/s00477-018-1591-4, 2018.

Cintoli, S., Neuman, S. P., and Di Federico, V.: Generating and scaling
fractional Brownian motion on finite domains, Geophys. Res. Lett., 32, 925–936, https://doi.org/10.1029/2005GL022608, 2005

Clauser, C.: Permeability of crystalline rocks, Eos Trans. AGU, 73, 233–238, 1992.

Cover, T. M. and Thomas, J. A.: Elements of Information Theory, John Wiley,
Hoboken, NJ, 2006.

Dausse, A., Leonardi, V., and Jourde, H.: Hydraulic characterization and
identification of flow-bearing structures based on multiscale investigations
applied to the Lez karst aquifer, J. Hydrol.: Reg. Stud., 26, 100627,
https://doi.org/10.1016/j.ejrh.2019.100627, 2019.

Dell'Oca, A.: Berea Permeabilities, available at: https://data.mendeley.com/datasets/ygcgv32nw5/1, last access:
26 August 2019.

Deutsch, C. V. and Journel, A. G.: Integrating well test derived effective
absolute conductivities in geostatistical reservoir modeling, in: Stochastic
Modeling and Geostatistics: Principles, Methods and Case Studies, AAPG Computer Applications in Geology, No. 3, edited by: Yarus, J. and Chambers, R., Amer. Assoc. of Petrol. Geol., Tulsa, 131–142, 1994.

Dykaar, B. B. and Kitanidis, P. K.: Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach, 1. Methods, Water Resour. Res., 28, 1155–1166, https://doi.org/10.1029/91WR03084, 1992a.

Dykaar, B. B. and Kitanidis, P. K.: Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach, 2. Results, Water Resour. Res., 28, 1167–1178, https://doi.org/10.1029/91WR03083, 1992b.

Galvão, P., Halihan, T., and Hirata, R.: The karst permeability scale
effect of Sete Lagos, MG, Brazil, J. Hydrol., 532, 149–162, https://doi.org/10.1016/j.jhydrol.2015.11.026, 2016.

Goggin, D. J., Thrasher, R. L., and Lake, L. W.: A theoretical and experimental analysis of minipermeameter response including gas slippage and
high velocity flow effects, In Situ, 12, 79–116, 1988.

Gong, W., Gupta, H. V., Yang, D., Sricharan, K., and Hero III, A. O.:
Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach, Water Resour. Res., 49, 2253–2273,
https://doi.org/10.1002/wrcr.20161, 2013.

Gong, W., Yang, D., Gupta, H. V., and Nearing, G.: Estimating information
entropy for hydrological data: One-dimensional case, Water Resour. Res., 50, 5003–5018, https://doi.org/10.1002/2014WR015874, 2014.

Goodwell, A. E. and Kumar, P.: Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables, Water Resour. Res., 53, 5920–5942, https://doi.org/10.1002/2016WR020216, 2017.

Gotovac, H., Cvetkovic, V., and Andrievic, R.: Significance of higher moments for complete characterization of the travel time probability density function in heterogeneous porous media using the maximum entropy principle, Water Resour. Res., 46, W05502, https://doi.org/10.1029/2009WR008220, 2010.

Griffith, V. and Ho, T.: Quantifying redundant information in predicting a
target random variable, Entropy, 17, 4644–4653, https://doi.org/10.3390/e17074644, 2015.

Griffith, V. and Koch, C.: Quantifying synergistic mutual information,
Guided Self-Organization: Inception, edited by: Prokopenko, Springer-Verlag, Berlin, Germany, 159–190, 2014.

Guadagnini, A., Neuman, S. P., Schaap, M. G., and Riva, M.: Anisotropic
statistical scaling of vadose zone hydraulic property estimates near Maricopa, Arizona, Water Resour. Res., 49, 1–17, https://doi.org/10.1002/2013WR014286,
2013.

Guadagnini, A., Riva, M., and Neuman, S. P.: Recent advances in scalable
non-Gaussian geostatistics: the generalized sub-Gaussian model, J. Hydrol.,
562, 685–691, https://doi.org/10.1016/j.jhydrol.2018.05.001, 2018.

Guzman, A., Neuman, S. P., Lohrstorfer, C., and Bassett, R. L.: Validation studies for assessing flow and transport through unsaturated fractured rocks, in: Rep. NUREG/CR-6203, chap. 4, edited by: Bassett, R. L., Neuman, S. P., Rasmussen, T. C., Guzman, A., Davidson, G. R., and Lohrstorfer, C. E., US Nuclear Regulatory Commission, Washington, D.C., 1994.

Guzman, A. G., Geddis, A. M., Henrich, M. J., Lohrstorfer, C. F., and Neuman, S. P.: Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap research site: Results of steady state test interpretation, Rep. NUREG/CR-6360, US Nuclear Regulatory Commission, Washington, D.C., 1996.

Harder, M., Salge, C., and Polani, D.: Bivariate measure of redundant
information, Phys. Rev. E, 87, 012130, https://doi.org/10.1103/PhysRevE.87.012130, 2013.

Harvey, C. F.: Interpreting parameter estimates obtained from slug tests in
heterogeneous aquifers, MS thesis, Appl. Earth Science Department, Stanford University, Stanford, 1992.

Hyun, Y., Neuman, S. P., Vesselinov, V. V., Illman, W. A., Tartakovsky, D. M., and Di Federico, V.: Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff, Water Resour. Res.,
38, 1092, https://doi.org/10.1029/2001WR000658, 2002.

Illman, W. A.: Analysis of permeability scaling within single boreholes, Geophys. Res. Lett., 31, L06503, https://doi.org/10.1029/2003GL019303, 2004.

Kaiser, A. and Schreiber, T.: Information transfer in continuous processes, Physica D, 166, 43–62, https://doi.org/10.1016/S0167-2789(02)00432-3, 2002.

Kitanidis, P. K.: The concept of the dilution index, Water Resour. Res., 30, 2011–2016, https://doi.org/10.1029/94WR00762, 1994.

Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U., and Zehe, E.: On the dynamic nature of hydrological similarity, Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, 2018.

Lowry, T. S. and Tidwell, V. C.: Investigation of permeability upscaling
experiments using deterministic modeling and monte carlo analysis, in: World Water and Environmental Resources Congress 2005, 15–19 May 2005, Anchorage,
Alaska, USA, https://doi.org/10.1061/40792(173)372, 2005.

Mälicke, M., Hassler, S. K., Blume, T., Weiler, M., and Zehe, E.: Soil moisture: variable in space but redundant in time, Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, 2020.

Maréchal, J. C., Dewandel, B., and Subrahmanyam, K.: Use of hydraulic
tests at different scales to characterize fracture network properties in the
weathered-fractured layer of a hard rock aquifer, Water Resour. Res., 40,
W11508, https://doi.org/10.1029/2004WR003137, 2004.

Medici, G., West, L. J., and Mountney, N. P.: Characterization of a fluvial
aquifer at a range of depths and scales: the Triassic St. Bees sandstone
formation, Cumbria, UK, Hydrogelog. J., 26, 565–591, https://doi.org/10.1007/s10040-017-1676-z, 2018.

Menafoglio, A., Guadagnini, A., and Secchi, P.: A Class-Kriging predictor for functional compositions with application to particle-size curves in
heterogeneous aquifers, Math. Geosci., 48, 463–485, https://doi.org/10.1007/s11004-015-9625-7, 2016.

Mishra, S., Deeds, N., and Ruskauff, G.: Global sensitivity analysis techniques for probabilistic ground water modeling, Ground Water, 47, 730–747, https://doi.org/10.1111/j.1745-6584.2009.00604.x, 2009.

Molz, F., Dinwiddie, C. L., and Wilson, J. L.: A physical basis for calculating instrument spatial weighting functions in homogeneous systems,
Water Resour. Res., 39, 1096, https://doi.org/10.1029/2001WR001220, 2003.

Nearing, G. S., Ruddell, B. J., Clark, P. M., Nijssen, B., and Peters-Lidard, C. D.: Benchmarking and process diagnostic of land models, J. Hydrometeorol., 19, 1835–1852, https://doi.org/10.1175/JHM-D-17-0209.1, 2018.

Neuman, S. P.: Generalized scaling of permeabilities: Validation and effect of support scale, Geophys. Res. Lett., 21, 349–352, https://doi.org/10.1029/94GL00308, 1994.

Neuman, S. P. and Di Federico, V.: Multifaceted nature of hydrogeologic scaling and its interpretation, Rev. Geophys., 41, 1014, https://doi.org/10.1029/2003RG000130, 2003.

Neuman, S. P., Riva, M., and Guadagnini, A.: On the geostatistical characterization of hierarchical media, Water Resour. Res., 44, W02403,
https://doi.org/10.1029/2007WR006228, 2008.

Nowak, W. and Guthke, A.: Entropy-based experimental design for optimal model discrimination in the geosciences, Entropy, 18, 409, https://doi.org/10.3390/e18110409, 2016.

Olbrich, E., Bertschinger, N., and Rauh, J.: Information decomposition and
synergy, Entropy, 11, 3501–3517, https://doi.org/10.3390/e17053501, 2015.

Oliver, D. S.: The averaging process in permeability estimation from well-test data, SPE Form Eval., 5, 319–324, https://doi.org/10.2118/19845-PA, 1990.

Paillet, P. L.: Analysis of geophysical well logs and flowmeter measurements
in borehole penetrating subhorizontal fracture zones, Lac du Bonnet Batholith, Manitoba, Canada, Water-Resources investigation report 89, US Geological Survey, Lakewood, Colorado, 30 pp., 1989.

Pavelic, P., Dillon, P., and Simmons, C. T.: Multiscale characterization of
a heterogeneous aquifer using an ASR operation, Ground Water, 44, 155–164, https://doi.org/10.1111/j.1745-6584.2005.00135.x, 2006.

Quinn, P., Cherry, J. A., and Parker, B. L.: Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in
fractured-rock boreholes, Hydrogeol. J., 20, 1529–1547, 2012.

Riva, M., Neuman, S. P., Guadagnini, A., and Siena, S.: Anisotropic scaling of Berea sandstone log air permeability statistics, Vadose Zone J., 12, 1–15, https://doi.org/10.2136/vzj2012.0153, 2013.

Rovey, C. W. and Cherkauer, D. S.: Scale dependency of hydraulic conductivity measurements, Ground Water, 33, 769–780, https://doi.org/10.1111/j.1745-6584.1995.tb00023.x, 1995.

Ruddell, B. L. and Kumar, P.: Ecohydrologic process networks: 1. Identification, Water Resour. Res., 45, W03419, https://doi.org/10.1029/2008WR007279, 2009.

Sanchez-Vila, X., Carrera, J., and Girardi, J. P.: Scale effects in
transmissivity, J. Hydrol., 183, 1–22, https://doi.org/10.1016/S0022-1694(96)80031-X, 1996.

Schad, H. and Teutsch, G.: Effects of the investigation scale on pumping test results in heterogeneous porous aquifers, J. Hydrol., 159, 61–77,
https://doi.org/10.1016/0022-1694(94)90249-6, 1994.

Schulze-Makuch, D. and Cherkauer, D. S.: Variations in hydraulic conductivity with scale of measurements during aquifer tests in heterogenous, porous carbonate rock, Hydrogeol. J., 6, 204–215, https://doi.org/10.1007/s100400050145, 1998.

Schulze-Makuch, D., Carlson, D. A., Cherkauer, D. S., and Malik, P.: Scale
dependency of hydraulic conductivity in heterogeneous media, Ground Water,
37, 904–919, https://doi.org/10.1111/j.1745-6584.1999.tb01190.x, 1999.

Shannon, C.: A mathematical theory of communication, Bell Syst. Tech. J.,
27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.

Shapiro, A. M., Ladderud, J. A., and Yager, R. M.: Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger
length dimensions, Hydrogeol. J., 23, 1319–1339, https://doi.org/10.1007/s10040-015-1285-7, 2015.

Siena, M., Guadagnini, A., Riva, M., and Neuman, S. P.: Extended power-law
scaling of air permeabilities measured on a block of tuff, Hydrol. Earth Syst. Sci., 16, 29–42, https://doi.org/10.5194/hess-16-29-2012, 2012.

Stone, J. V.: Information Theory: A Tutorial Introduction, Sebtel Press,
preprint: arXiv:1802.05968, 2015.

Tartakovsky, D. M., Moulton, J. D., and Zlotnik, V. A.: Kinematic structure of minipermeameter flow, Water Resour. Res., 36, 2433–2442,
https://doi.org/10.1029/2000WR900178, 2000.

Tidwell, V. C. and Wilson, J. L.: Laboratory method for investigating
permeability upscaling, Water Resour. Res., 33, 1607–1616,
https://doi.org/10.1029/97WR00804, 1997.

Tidwell, V. C. and Wilson, J. L.: Permeability upscaling measured on a block of Berea Sandstone: Results and interpretation, Math. Geol., 31, 749–769, https://doi.org/10.1023/A:1007568632217, 1999a.

Tidwell, V. C. and Wilson, J. L.: Upscaling experiments conducted on a block of volcanic tuff: Results for a bimodal permeability distribution, Water Resour. Res., 35, 3375–3387, https://doi.org/10.1029/1999WR900161, 1999b.

Tidwell, V. C. and Wilson, J. L.: Heterogeneity, permeability patterns, and
permeability upscaling: Physical characterization of a block of Massillon
Sandstone exhibiting nested scales of heterogeneity, SPE Reser. Eval. Eng., 3, 283–291, https://doi.org/10.2118/65282-PA, 2000.

Tidwell, V. C. and Wilson, J. L.: Visual attributes of a rock and their
relationship to permeability: A comparison of digital image and minipermeameter data, Water Resour. Res., 38, 1261, https://doi.org/10.1029/2001WR000932, 2002.

Vesselinov, V. V., Neuman, S. P., and Illman, W. A.: Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured
tuff: 1. Methodology and borehole effects, Water Resour. Res., 37, 3001–3018, https://doi.org/10.1029/2000WR000133, 2001a.

Vesselinov, V. V., Neuman, S. P., and Illman, W. A.: Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured
tuff: 2. Equivalent parameters, high-resolution stochastic imaging and scale
effects, Water Resour. Res., 37, 3019–3042, https://doi.org/10.1029/2000WR000135, 2001b.

Wellman, F. J. and Regenaur-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophysics, 526–529, 207–216, https://doi.org/10.1016/j.tecto.2011.05.001, 2012.

Wellman, F. J.: Information theory for correlation analysis and estimation of uncertainty reduction in maps and models, Entropy, 15, 1464–1485,
https://doi.org/10.3390/e15041464, 2013.

Williams, P. L. and Beer, R. D.: Nonnegative decomposition of multivariate
information, CoRR, available at: http://arxiv.org/abs/1004.2515, last access: 14 April 2010.

Winter, C. L. and Tartakovsky, D. M.: Theoretical foundation for conductivity scaling, Geophys. Res. Lett., 28, 4367–4369, https://doi.org/10.1029/2001GL013680, 2001.

Woodbury, A. D. and Ulrych, T. J.: Minimum relative entropy: forward probabilistic modeling, Water Resour. Res., 29, 2847–2860, https://doi.org/10.1029/93WR00923, 1993.

Woodbury, A. D. and Ulrych, T. J.: Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant, Water Resour. Res. 32, 2671–2681, https://doi.org/10.1029/95WR03818, 1996.

Woodbury, A. D. and Ulrych, T. J.: A full-Bayesian approach to the groundwater inverse problem for steady state flow, Water Resour. Res., 36,
2081–2093, https://doi.org/10.1029/2000WR900086, 2000.

Zeng, X. K., Wan, D., and Wu, J. C.: Sensitivity analysis of the probability
distribution of groundwater level series based on information entropy, Stoch. Environ. Res. Risk. Assess., 26, 345–356, https://doi.org/10.1007/s00477-012-0556-2, 2012.

Zhang, D. and Winter, C. L.: Theory, modeling and field investigation in Hydrogeology: A special volume in honor of Shlomo P. Neuman's 60^{th} birthday, Special paper, Geological Society of America, Boulder, Colorado, 2000.

Zlotnik, V. A., Zurbuchen, B. R., Ptak, T., and Teutsch, G.: Support volume
and scale effect in hydraulic conductivity: experimental aspects, in: Theory, Modeling, and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neuman's 60^{th} Birthday, Geological Society of America Special Paper 348, edited by: Zhang, D. and Winter, C. L., Geological Society of America, Boulder, CO, 191–213, 2000.