Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.

Beven, K.: Facets of uncertainty: Epistemic uncertainty, non-stationarity,
likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016.

Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference, Springer, New York, 2004.

Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary
extreme value analysis in a changing climate, Climatic Change, 127, 353–369, https://doi.org/10.1007/s10584-014-1254-5, 2014.

Chow, V. T. (Ed.): Statistical and probability analysis of hydrologic data, in: Handbook of applied hydrology, McGraw-Hill, New York, 8.1–8.97, 1964.

Cohen, J.: A power primer, Psycholog. Bull., 112, 155–159, 1992.

Cohen, J.: The Earth Is Round (*p*<.05), Am. Psychol., 49, 997–1003, 1994.

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer, London, 2001.

Cooley, D.: Return Periods and Return Levels Under Climate Change, in:
Extremes in a Changing Climate, edited by: AghaKouchak, A., Easterling, D.,
Hsu, K., Schubert, S., and Sorooshian, S., Springer, Dordrecht, 97–113,
https://doi.org/10.1007/978-94-007-4479-0_4, 2013.

Du, T., Xiong, L., Xu, C. Y., Gippel, C. J., Guo, S., and Liu, P.: Return
period and risk analysis of nonstationary low-flow series under climate change, J. Hydrol., 527, 234–250, https://doi.org/10.1016/j.jhydrol.2015.04.041, 2015.

Eagleson, P. S.: Dynamics of flood frequency, Water Resour. Res., 8, 878–898,
https://doi.org/10.1029/WR008i004p00878, 1972.

Fiorentino, M., Gabriele, S., Rossi, F., and Versace, P.: Hierarchical approach for regional flood frequency analysis, in: Regional Flood Frequency
Analysis, edited by: Singh, V. P., D. Reidel, Norwell, Massachusetts, 35-49, 1987.

Gilleland, E. and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis Package in R, J. Stat. Soft., 72, 1–39, 2016.

Gioia, A., Iacobellis, V., Manfreda, S., and Fiorentino, M.: Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295–1307, https://doi.org/10.5194/hess-12-1295-2008, 2008.

Gocic, M. and Trajkovic, S.: Analysis of changes in meteorological variables
using Mann-Kendall and Sen's slope estimator statistical tests in Serbia,
Global Planet. Change, 100, 172–182, https://doi.org/10.1016/j.gloplacha.2012.10.014, 2013.

Iacobellis, V., Gioia, A., Manfreda, S., and Fiorentino, M.: Flood quantiles estimation based on theoretically derived distributions: regional analysis in Southern Italy, Nat. Hazards Earth Syst. Sci., 11, 673–695, https://doi.org/10.5194/nhess-11-673-2011, 2011.

Jenkinson, A. F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Q. J. Roy. Meteorol. Soc., 81,
158–171, 1955.

Kendall, M. G.: Rank Correlation Methods, 4th Edn., Charles Griffin, London,
UK, 1975.

Khintchine, A.: Korrelationstheorie der stationären stochastischen
Prozesse, Math. Ann., 109, 604–615, https://doi.org/10.1007/BF01449156, 1934.

Kiely, G.: Climate change in Ireland from precipitation and streamflow
observations, Adv. Water Resour., 23, 141–151, https://doi.org/10.1016/S0309-1708(99)00018-4, 1999.

Kochanek, K., Strupczewski, W. G., Bogdanowicz, E., Feluch, W., and Markiewicz, I.: Application of a hybrid approach in nonstationary flood frequency analysis – a Polish perspective, Nat. Hazards Earth Syst. Sci. Discuss., 1, 6001–6024, https://doi.org/10.5194/nhessd-1-6001-2013, 2013.

Kolmogorov, A. N.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische Annalen, 104, 415–458 (English translation: On analytical methods in probability theory, in: Kolmogorov, A. N., 1992. Selected Works of A. N. Kolmogorov – Volume 2, Probability Theory and Mathematical Statistics, edited by: Shiryayev, A. N., Kluwer, Dordrecht, the Netherlands, 62–108, https://doi.org/10.1007/BF01457949, 1931.

Koutsoyiannis, D. and Montanari A.: Negligent killing of scientific concepts: the stationarity case, Hydrolog. Sci. J., 60, 1174–1183,
https://doi.org/10.1080/02626667.2014.959959, 2015.

Kundzewicz, Z. W. and Robson, A. J.: Change detection in hydrological records – a review of the methodology, Hydrolog. Sci. J., 49, 7–19,
https://doi.org/10.1623/hysj.49.1.7.53993, 2004.

Laio, F., Baldassarre, G. D., and Montanari, A.: Model selection techniques
for the frequency analysis of hydrological extremes, Water Resour. Res.,
45, W07416, https://doi.org/10.1029/2007wr006666, 2009.

Lehmann, E. L.: Nonparametrics, Statistical Methods Based on Ranks, Holden-Day, Oxford, England, 1975

Lieber, R. L.: Statistical significance and statistical power in hypothesis
testing, J. Orthop. Res., 8, 304–309, https://doi.org/10.1002/jor.1100080221, 1990.

Madsen, H., Rasmussen, P., and Rosbjerg, D.: Comparison of annual maximum
series and partial duration series for modelling exteme hydrological events:
1. At-site modeling, Water Resour. Res., 33, 747–757, https://doi.org/10.1029/96WR03848, 1997.

Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., Stouffer, R. J., Dettinger, M. D., and Krysanova,
V.: On Critiques of “stationarity is Dead: Whither Water Management?”, Water Resour. Res., 51, 7785–7789, https://doi.org/10.1002/2015WR017408, 2015.

Montanari, A. and Koutsoyiannis, D.: Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resour. Res., 50, 9748–9756,
https://doi.org/10.1002/2014wr016092, 2014.

Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P.,
Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S.,
Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and
Belyaev, V.: “Panta Rhei—Everything Flows”: Change in hydrology and
society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, 2013.

Muraleedharan, G., Guedes Soares, C., and Lucas, C.: Characteristic and moment generating functions of generalised extreme value distribution (GEV),
in: Sea Level Rise, Coastal Engineering, Shorelines and Tides, Nova Science, New York, 2010.

Olsen, J. R., Lambert, J. H., and Haimes, Y. Y.: Risk of extreme events under nonstationary conditions, Risk Anal., 18, 497–510,
https://doi.org/10.1111/j.1539-6924.1998.tb00364.x, 1998.

Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D.: Trends and climate evolution: statistical approach for very high temperatures in
France, Climatic Change, 81, 331–352, https://doi.org/10.1007/s10584-006-9116-4, 2007.

Parey, S., Hoang, T. T. H., and Dacunha-Castelle, D.: Different ways to compute temperature return levels in the climate change context, Environmetrics, 21, 698–718, https://doi.org/10.1002/env.1060, 2010.

Pettitt, A. N.: A non-parametric approach to the change-point problem, Appl.
Stat., 28, 126–135, https://doi.org/10.2307/2346729, 1979.

Read, L. K. and Vogel, R. M.: Reliability, return periods, and risk under
nonstationarity, Water Resour. Res., 51, 6381–6398,
https://doi.org/10.1002/2015WR017089, 2015.

Rosbjerg, D., Blöschl, G., Burn, D., Castellarin, A., Croke, B., Di Baldassarre, G., Iacobellis, V., Kjeldsen, T. R., Kuczera, G., Merz, R.,
Montanari, A., Morris, D., Ouarda, T. B. M. J., Ren, L., Rogger, M., Salinas, J. L., Toth, E., and Viglione, A.: Prediction of floods in ungauged basins, in: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, edited by: Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., Cambridge University Press, Cambridge, 189–226, https://doi.org/10.1017/CBO9781139235761.012, 2013.

Rossi, F., Fiorentino, M., and Versace, P.: Two-Component Extreme Value
Distribution for Flood Frequency Analysis, Water Resour. Res., 20, 847–856,
https://doi.org/10.1029/WR020i007p00847, 1984.

Salas, J. D. and Obeysekera, J.: Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events, J. Hydrol. Eng., 19, 554–568, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.

Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464,
1978.

Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.

Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty dominates the distribution of extremes, Adv. Water Resour., 77, 17–36,
https://doi.org/10.1016/j.advwatres.2014.12.013, 2015.

Serinaldi, F., Kilsby, C. G., and Lombardo, F.: Untenable nonstationarity:
An assessment of the fitness for purpose of trend tests in hydrology, Adv.
Water Resour., 111, 132–155, https://doi.org/10.1016/J.ADVWATRES.2017.10.015, 2018.

Sivapalan, M., Prediction in Ungauged Basins: A Grand Challenge for Theoretical Hydrology, Hydrol. Process., 17, 3163–3170, 2003.

Smadi, M. M. and Zghoul A.: A sudden change in rainfall characteristics in
Amman, Jordan during the mid 1950s, Am. J. Environ. Sci., 2, 84–91,
https://doi.org/10.3844/ajessp.2006.84.91, 2006.

Strupczewski, W. G., Kochanek, K., Bogdanowicz, E., Markiewicz, I., and Feluch, W.: Comparison of two nonstationary flood frequency analysis methods
within the context of the variable regime in the representative polish rivers, Acta Geophys., 64, 206–236, https://doi.org/10.1515/acgeo-2015-0070, 2016.

Sugiura, N.: Further analysis of the data by Akaike's information criterion
and the finite corrections, Commun. Stat. Theor. Meth., A7, 13–26,
https://doi.org/10.1080/03610927808827599, 1978.

Todorovic, P. and Zelenhasic, E.: A Stochastic Model for Flood Analysis, Water Resour. Res., 6, 1641–1648, https://doi.org/10.1029/WR006i006p01641, 1970.

Tramblay, Y., Neppel, L., Carreau, J., and Najib, K.: Non-stationary frequency analysis of heavy rainfall events in southern France, Hydrolog. Sci. J., 58, 280–194, https://doi.org/10.1080/02626667.2012.754988, 2013.

Vogel, R. M., Rosner, A., and Kirshen, P. H.: Brief Communication: Likelihood of societal preparedness for global change: trend detection, Nat. Hazards Earth Syst. Sci., 13, 1773–1778, https://doi.org/10.5194/nhess-13-1773-2013, 2013.

Wang, W., Van Gelder, P. H., and Vrijling, J. K.: Trend and stationarity
analysis for streamflow processes of rivers in Western Europe in the 20th Century, in: IWA International Conference on Water Economics, Statistics, and Finance, 8–10 July 2005, Rethymno, Greece, 2005.

Yilmaz, A. G. and Perera, B. J. C.: Extreme rainfall nonstationarity
investigation and intensity–frequency–duration relationship, J. Hydrol. Eng., 19, 1160–1172, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000878, 2014.

Yilmaz, A. G., Hossain, I., and Perera, B. J. C.: Effect of climate change
and variability on extreme rainfall intensity–frequency–duration relationships: a case study of Melbourne, Hydrol. Earth Syst. Sci., 18,
4065–4076, https://doi.org/10.5194/hess-18-4065-2014, 2014.

Yue, S., Pilon, P., and Cavadias, G.: Power of the Mann–Kendall and
Spearman's rho tests for detecting monotonic trends in hydrological series,
J. Hydrol., 259, 254–271, https://doi.org/10.1016/S0022-1694(01)00594-7, 2002a.

Yue, S., Pilon, P., Phinney, B., and Cavadias, G.: The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process., 16, 1807–1829, https://doi.org/10.1002/hyp.1095, 2002b.