Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-869-2020
https://doi.org/10.5194/hess-24-869-2020
Research article
 | 
26 Feb 2020
Research article |  | 26 Feb 2020

Event selection and two-stage approach for calibrating models of green urban drainage systems

Ico Broekhuizen, Günther Leonhardt, Jiri Marsalek, and Maria Viklander

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695, https://doi.org/10.5194/hess-26-5685-2022,https://doi.org/10.5194/hess-26-5685-2022, 2022
Short summary
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022,https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874, https://doi.org/10.5194/hess-26-2855-2022,https://doi.org/10.5194/hess-26-2855-2022, 2022
Short summary
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935, https://doi.org/10.5194/hess-25-5917-2021,https://doi.org/10.5194/hess-25-5917-2021, 2021
Short summary
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858, https://doi.org/10.5194/hess-25-5839-2021,https://doi.org/10.5194/hess-25-5839-2021, 2021
Short summary

Cited articles

Aguilar, M. F., McDonald, W. M., and Dymond, Randel, L.: Benchmarking laboratory observation uncertainty for in-pipe storm sewer discharge measurements, J. Hydrol., 534, 73–86, https://doi.org/10.1016/j.jhydrol.2015.12.052, 2016. a
Broekhuizen, I., Leonhardt, G., Marsalek, J., and Viklander, M.: Selection of Calibration Events for Modelling Green Urban Drainage, in: New Trends in: Urban Drainage Modelling, edited by: Mannina, G., 608–613, Springer International Publishing, Cham, 2019. a
Datta, A. R. and Bolisetti, T.: Uncertainty analysis of a spatially-distributed hydrological model with rainfall multipliers, Can. J. Civil Eng., 43, 1062–1074, https://doi.org/10.1139/cjce-2015-0413, 2016. a
Del Giudice, D., Albert, C., Rieckermann, J., and Reichert, P.: Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation, Water Resour. Res., 52, 3162–3186, https://doi.org/10.1002/2015WR017871, 2016. a
Dotto, C., Kleidorfer, M., Deletic, A., Rauch, W., McCarthy, D., and Fletcher, T.: Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data, Environ. Modell. Softw., 26, 1225–1239, https://doi.org/10.1016/j.envsoft.2011.03.013, 2011. a
Download
Short summary
Urban drainage models are usually calibrated using a few events so that they accurately represent a real-world site. This paper compares 14 single- and two-stage strategies for selecting these events and found significant variation between them in terms of model performance and the obtained values of model parameters. Calibrating parameters for green and impermeable areas in two separate stages improved model performance in the validation period while making calibration easier and faster.