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Abstract

This article compares the results of three different models, namely empirical, geomorphoclimatic and stochastic, proposed in the
literature for synthesising the reduction curve of average river discharges, of given frequency, over different durations. The analysis
used observed reduction ratios inferred for twelve recording gauge stations with known rating curves, situated on central Italian
watercourses all of which flow into the Adriatic sea. Particular emphasis was laid on the difficulties encountered in the
parameterisation of the models, on the relations between the different formulations and on the existence of a link between the model

parameters and the characteristic response times of the basins.

Introduction

The design of hydraulic flood protection structures
requires the estimation of discharge volumes of pre-
defined return period for durations from several hours to
several days. In some cases, (e.g. design of flood control
reservoirs or retarding basins, flood damage studies
requiring information on depth, area, and duration of
flooding), knowledge of the actual shape of the discharge
hydrograph is not necessary, as the crucial information is
the total volume of water to be stored (NERC, 1975,
chapter 5). In these cases, the probability study of the
discharge volumes becomes, in a manner perfectly
analogous to that of flood peaks, the search for the
frequency law of the variable Vp 1, where J is the
discharge volume over the duration D with return period
T.

If the discharge hydrograph shape is not of interest, the
volume Vp 7 can be expressed as Vpr=0pr D, where
QOpr is the mean discharge, over duration D, with an
assigned return period 7. Consequently, the probability
study of the flood volumes ¥, rleads to an estimation of the
discharge quantiles Qp, 7, which can be expressed as:

Opr =Kpr- 1y, (1)

where fig, is the mean of the annual maximum values of the
average discharges over a duration D (scale factor), and Kp r
is the growth factor. However, estimation of the growth

factor Kp, r requires an amount of data frequently not easily
available even in the instrumented river sections.

To by-pass this difficulty, the United Kingdom NERC
(1975) suggests estimating Qp, 7 by relating it to the flood
peak Oy of equal return period by means of the reduction
ratio (or flow duration reduction curve), defined as:

ro,r = Qp,r/Qr 2)

The quantile Q7 can also be expressed as Or=Kr- ug
where K is the relevant growth factor and pig (i.e. the scale
factor) is the mean of the annual maximum flood peaks. As
more flood peak data are generally available than average
discharges Qp, the estimation of K7 is easier and more
precise than that of Kp 1.

Thus, the quantile Qp 7 is formulated as:

Qpr=rpr-Qr=rpr-Kr-pp (3)

where the focus is now on the flow duration reduction curve
rp,7- In scientific literature, many studies are dedicated to
the models and techniques for estimating both the growth
factor K7 and scale factor g, while, to the authors’
knowledge, only three models have been proposed for
representing the reduction curve 7p 1.

The first of the these models, which can be classified as
empirical, is presented in the NERC report itself (1975). It is
a two-parameter equation, selected solely on the basis of its
capability of reproducing the trend in the observed
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reduction ratios. The second model, proposed by Fior-
entino et al. (1987), is classified by its authors as
geomorphoclimatic. In this model, the rainfall is represented
through the well known two-parameter intensity duration
curve while the basin response is represented through a
Geomorphological Instantaneous Unit  Hydrograph
(GIUH) (e.g. Rosso, 1982; Troutman and Karlinger,
1985, 1986). The third model, proposed by Bacchi et al.
(1992), can be classified as stochastic and is based on the
analysis of the extremes of two Gaussian stationary
processes representing the continuous time series of the
discharges through a river section and the corresponding
average discharges relevant to time windows of generic
duration D.

These models are characterised by different basic
hypotheses, structures and parameters whose estimation
requires different techniques and data sets. This paper
presents a critical review of each model and analyses the
ability of each to reproduce the observed flow duration
reduction curves using data from twelve river sections
situated in central Italy. Particular emphasis is laid on the
difficulties encountered in the parameterisation of these
models, on the possible relations between the three different
formulations and on the existence of a link between the
model parameters and the characteristic response time of
the basins.

The flow duration reduction curve

Equation 2 shows a formal dependence of the flow reduction
curve on the return period 7 it can be useful to re-write
Eqn. 2 as:

. _Opr Mo, Krp  po,- (1+xrp-CVp)
PT70r T TugKr ng-(L+xr-CV)

where k7 is the frequency factor (Chow, 1951), which is a
function of the return period and the appropriate
probability distribution used, while CV” is the coefficient
of variation of the annual maximum peak floods. The same
applies to k7, p and CVp.

Typical probability distributions used for the frequency
factors are the Extreme Value Type I (EV1) model or the
Generalised Extreme Value (GEV) model (Jenkinson,
1955). For example, in the case of the EV1 model used
for both variables Q7 and Qp 7, the reduction curve
becomes:

Hop- {1 —?{0.57724r In [ln(Ti 1)] }.CVD}

)

DT =

O R P Y [
(5)

which shows the dependency of the reduction curve on the
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return period 7. Nevertheless, this dependency becomes
weaker as T increases. In fact, Eqn. 5, for 7— o0, tends to:

cv,
rp = HQLZD (6)

where the limit is reached quickly (say 7= 30-50), given
that the usual values observed of the coefficients of variation
remain in the range 0.2-0.4 (note that in Eqn. 6 the symbol
used for the reduction curve is rp to highlight the
independence from the return period).

However, as long as the CV remains constant at different
durations, the reduction curve does not vary with the return
period and reduces to the ratios of the mean values of the
annual maxima, i.e.:

Ko.p @)

Q

-
rD—

Equation 7 can be obtained directly from Eqn. 5 when the
return period 7 = 2.33, i.e. when the return period of the
mean of a Gumbel variate is considered, even if the CJ can
vary over different durations.

Similar results can be obtained using different prob-
ability distributions and are confirmed by case studies
(NERC, 1975; Bacchi er al., 1992; Franchini and Galeati,
1998).

To summarise, the reduction curve is weakly dependent
on the return period 7 so that, in cases in the real world, it
can be considered completely independent and the symbol
rp could be used instead of rp, 7. Furthermore, the reduction
curve coincides with the ratios of the mean annual floods
when the growth factor does not depend on the durations D:
for this case the symbol 75’ is used.

In this last case, real world data show a tendency for CVp
to decrease slowly as the time interval D increases. However,
as the coefficient of variation has a large sampling error, it is
often assumed constant over the different durations. This
assumption implies the use of Eqn. 7, although average
discharges over longer durations may be slightly over-
estimated ( 5—/0% considering the range of the usual values
of the CV).

In the design of hydraulic flood protection structures, the
overestimation from the use of the reduction curve
expressed by Eqn. 7 can be accepted easily because it errs
on the side of safety; thus it compensates for other sources
of uncertainty in dimensioning the structure. For this
reason, rp’ represents the most common and preferred form
of the reduction curve (NERC, 1975).

These considerations are fundamental to understanding
correctly, the three models described below. The first two
models of the reduction curve refer directly to 5’ (Eqn. 7);
the third of Bacchi ez al. (1992) is based on the general
definition of the reduction curve rp 7 (Eqn. 2) but can be
transformed easily into an expression which is an estimator
of r ,D~
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Empirical model

The empirical model (EM) was presented in the United
Kingdom NERC report (1975). Its original expression can
be re-arranged as:

/= (1 +§>ﬁ_l ®)

where o and f are two parameters to be estimated;
parameter o has a time dimension, while § is dimensionless
and less than one. Its shape is justified solely by the
capability of representing the observed reduction ratios
expressed as ratios of the mean annual maximum values
over different durations.

Traditionally, the parameters of Eqn. 8 are estimated
using the least squares method. However, the parameter
values obtained are poorly correlated with catchment
characteristics, as shown in NERC (1975), which makes
it difficult to regionalise Eqn. 8. To by-pass this
problem, a modified estimation approach may be used;
it depends on the type of data available and will be
presented directly in the section dedicated to the
numerical application.

Geomorphoclimatic model

The geomorphoclimatic model (GM) proposed by
Fiorentino ez al (1987) for representing the reduction
curve rp considers a simple event-based rainfall-runoff
transformation whose main aspects can be subdivided into
three parts: a) the net rainfall input, b) the rainfall-runoff
transformation and c) the technique for estimating pio
and g .

a) The net rainfall inpus. It is assumed that, for any
storm duration 4, the areal rainfall intensity i4(d) is
constant in time and decreasing with 4 (Fig. 1a). The net
areal precipitation is expressed simply as ¢-i4(d), where
@ is the runoff coefficient assumed to be constant over
time and independent of the duration and intensity of the
rainfall.

b) The rainfall-runoff transformation. The basin is
considered as a lumped linear system; hence, the output,
ie. the basin outlet discharge ¢(%,d), relevant to a net
input @ i4d), can be expressed through the convolution
integral:

d(td) = ¢ is(d) - /¢ w(t)dn - A;
t—d of
0 if

t—d>0
9)

t—d<90
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Fig. 1. Schematic representation of the of the geomorphoclimatic
model: (a) identification of the critical rainfall duration d,,, with
reference to the flood peak; (b) different average values qp(1,d) for a
given rainfall duration d.

where #(t) is the IUH of the basin. With:

S() = /0 "Dt

AS(e, ) = [S(¢) — St — 4)] ﬁv>d1m
S(z) ift<d
Eqn. 9 becomes:
q(t,d) = ¢ -is(d) - AS(t) - 4 (11)

For an assigned rainfall duration 4, the maximum value
gmax Of 4(2,d) is obtained at the instant 7, when AS(z,d) is
a maximum. Denoting the so-called peak function as
o(d) = AS(t,d) = S(t,) — S(t, —d) (Wood and Hebson,
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1986), the maximum discharge value can be expressed as:

9(tp,d) = gumax = ¢ - 14(d) -6 (d) - A (12)

As the duration of the precipitation 4 increases, the peak
function tends towards /, while the areal rainfall intensity
i4(d) tends towards zero'. Thus, there is a critical
precipitation duration 4 = 4,,, at which the product
14(d)- 0(d) is a maximum. Indicating with t, the instant at
which g7, is obtained, ie. the maximum value of g,
(see Fig. la), Eqn. 12 can be rewritten as:

q(t;,d"’p) = q:!lax =Q- iA(dcr,p) : O'(dcr,p) A (13)

In a similar manner, the maximum value of the discharge
qp(t,d), which represents the mean discharge over the
time interval of duration D (Fig. 1b) starting at the
instant ¢ and referring to a flood wave produced by a net
areal rainfall ¢-i4(d), can be written as:

D] dorp) = DDmax = @ 14(derp) - Ederp) - A (14)

where generally 4,,, # d,, and E(d,,) is a function
similar to the peak function defined above (see Appendix
A).

¢) The technique for estimating po and po . The reduction
ratios 7p are based on the average values of the annual
maximum floods over different durations D. Equations 13
and 14 allow for the estimation of maximum discharge
values for a given intensity duration curve i4(d). The
assumption made by Fiorentino er al. (1987) is that the
values of up and g can be estimated through Eqns. 13 and
14, respectively, when the intensity duration curve 74(d) is
parameterised to represent the average values of the annual
maximum intensities, i.e.y; (4). On the basis of this
assumption, the reduction curve rp can be written as:

1oy _ Firtiny)  Elder)
'uQ MiA(drf,p) ’ O'(d”m)

'h =

(15)

This last equation shows that the reduction curve ob-
tained using the GM model is defined after the attribution
of the areal intensity duration curve (representing the
average values of the annual maximum intensities of
different rainfall durations) and the ITUH (representing the
rainfall-runoff transformation process, present in the
functions o(4,,,) and E(4,,,)). The definition of the areal
intensity duration curve is related to the type of data
available and will be discussed in the section dedicated to the
numerical application.

! In the case of an IUH with a finite base time equal to the time of
concentration 7, of the basin, the peak function o(d) is 1 for
d > T,; otherwise, in the case of an IUH with an infinite base time
(e.g. Gamma or Weibull type IUH), the peak function o(d) tends
towards 1 as 4 tends towards infinity.
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Fig. 2. Schematic representation of the compensation effect in the
infiltration process.

The main assumptions characterising the GM model can
be summarised as follows: (a) the runoff coefficient ¢ is
independent of the duration and the intensity of the
precipitation, (b) the GM model considers only the surface
component of the flood events and (c) the average values of
the annual maximum flood discharges over different
durations are one-to-one related to the average values of
the annual maximum intensities.

With reference to the first assumption, it is known that
the infiltration capacity of the soil is not constant but
decreases with time, during a storm event, following a law
which is affected by rainfall intensity. The assumption of a
constant coefficient ¢ can, however, be justified (Rodri-
guez-Iturbe et al., 1982) by assuming a compensating effect
as shown in Fig. 2 where the shadow areas are equal so that
the total amount of water stored in the soil is given by the
area of the rectangle 4-(1—¢)- i (d).

The second assumption may be justified when peak
discharges or those relevant to short durations are con-
sidered. However, in the case of average discharges over
long durations, the base discharge component may not be
disregarded, being of the same magnitude of the average
discharge itself. This aspect, considered on its own, should
produce an underestimation of the reduction ratios on long
durations. However, the other model simplifications
combined with the calibration process mask this negative
influence, as will be shown in the numerical application.

The third assumption is acceptable only in the very
narrow frame of a lumped linear system when the areal
rainfall input hyetograph can have a rectangular shape alone
and the runoff coefficient is constant for all storm events.
Indeed, it is well known that the flood characteristics,
produced by a rainfall of given duration and total depth,
depend on the space-time storm distribution and the soil
water content at the beginning of the storm event. Thus, an
assigned flood peak value can be produced by very different
storm events and an assigned total rainfall depth can
produce very different flood peaks (Franchini ez al., 1996).

In conclusion, the three assumptions produce a marked
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® upcrossings
A © downcrossings

Fig. 3. Schematic representation of the crossings of a continuous process
in relation to a set threshold.

gap between the model and the real physical phenomenon of

the rainfall runoff transformation. However, the GM |

produces fairly good quality results, and a physical
interpretation of the main characteristics of the IUH u(2),
used to represent the rainfall runoff transformation, is still
possible.

Stochastic model

The stochastic model (SM) presented by Bacchi et al.
(1992) aims at characterising the extremes of the continuous
series ¢(t) of discharges flowing through the section under
study, and the extremes of the associated integral process
¢p(?) defined as:

wi) =3[ dods (16)

Assuming that the processes ¢(¢) and ¢p(f) can be
reduced, by standardisation, to the Gaussian and stationary
processes X(t) and Xp(z) respectively, Bacchi ez al. (1992)
derive an expression for the reduction curve rp ranalytically
by analysing the crossing properties of the two standardised

processes with reference to a given threshold value (Fig. 3).

The reduction curve, with reference to its general
definition given by Eqn. 2, has the following expression:

o= 0 (1- ) 2(3) (i)

(17)
where p, and 62 are the mean and the variance of the
process ¢(t), £z and Q; p are the second-order characteris-
tic frequencies of the spectral density function of the
standardised process X(7) and relevant integral process
Xp(t) respectively, while W(D) is the process variance
function, i.e. the law which expresses the attenuation of the

variance a§(D of Xp(?) versus the increase in D. Its form is

linked strictly to the auto-correlation function p(t) of the
process X (7) (which, of course, coincides with that of the
process ¢(t)) via the relation (Vanmarke, 1983):

D D
\11(1)):1—;2—/0 df/o pi—v)de  (18)

In turn, the auto-correlation function p(7) is linked to the
parameter 6, which represents the “scale of fluctuation”, i.e.
the characteristic time interval of the fluctuation of the
process X(¢) (and so of the process ¢(%)), via the following
relation (Vanmarcke, 1983):

0= 2/000 p(t)dr (19)

This parameter is particularly useful in characterising the
behaviour of the auto-correlation function; in fact it gives a
measure of the rate of decrease of the auto-correlation.

Furthermore, Bacchi et al (1992, p. 2776) observe
that u,/Qr < 1 and 6,/Q7 < 1 even for return periods T
which are not particularly high (say 7 greater than 5) and
therefore Eqn. 17 can be written as:

rpT = \/‘P(D), vT (20)

confirming the general weak dependency of the reduction
curve in relation to the return period. However, recalling
that the return period of the mean annual peak flood is of the
order of 24 years, Eqn. 20 can be also considered an
estimator of 7'p.

To give an explicit estimation of the function ¥(D) (and
thus of the reduction curve according to Eqn. 20), the form
of the auto-correlation function p(t) must be specified.
Bacchi ez al. (1992) suggest that the standardised process
X(t) can be considered as an autoregressive process of order
n (identified below as AR(n)), whose auto-correlation
function is:

p(D) =exp(—D/k)

n—1

(n—1)! n+/e 1!
(2n—2)kY(n — £ —1)!

@D/k 1 (21)
= (

where £ is a temporal scale parameter (Gelb, 1974, pp. 42—
44). Consequently, on the basis of Eqn. 19, the scale of
fluctuation is:

2211 (n — 1)1

O=rt—5,—2)

(22)
Table 1 sets out the various expressions for the auto-
correlation function for # = 1,2,3,4 obtained by combining
Egns. 21 and 22. Table 2 contains the corresponding
expressions of the reduction curve obtained by replacing the
equations of Table 1 in Eqn. 18 and eventually in Eqn. 20. It
can be seen that the stochastic model is completely defined
by the scale of fluctuation 6§ alone.
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Table 1. Stochastic model: autocorrelation function p(D) expressed as a function of the fluctuation scale
parameter 0 for different orders of the AR(n) process.

n=l (n—1)n+k—1)!

2w -1V

" (D) = exp(-D/K) 5
D k=0
P(D) = exp (—25

(4D +0) - exp (—4%)

2n — ) (n—k—I)!

@D/E)" 1 o=k

(2n— 2)!

50

n=2 p(D) = 0
(256-D2+144.D.9+27.02).exp(—ﬁg)
n=3 p(D) = 7 39
276
(32768 - D’ 430720 - D? -  + 12000 - D - 6° + 1875 - 6°) - exp (—g9>
n=4 p(D) =

1875 - ¢°

On the basis of the general theory of linear systems, the
autoregressive process AR(n) can be interpreted as the
output of a linear system whose «kernel function» is a
Gamma with parameters # and # and whose input is a
«shot noise» process with finite variance and Poisson
occurrences. Using this interpretation, the discharge
process ¢(t), in its standardised formulation X(2), can
be read as the result of a rainfall-runoff transformation in
which the et rainfall is represented by the «shot noise»
process and the basin response by a Gamma-type IUH
with parameters # and £ (Brath ez al., 1992). It follows that
q(t) is seen as the surface runoff component while the
parameter 0, linked to the parameters » and £ by Eqn. 22,
can be expressed as a function of the lag time #;, typical of
the basin. For a Gamma IUH ¢;, =#-£. Finally, the

expression of 6 versus the lag time ¢;, for n=1,2,3,4, is
shown in Table 3.

In short, the interpretation of the process ¢() suggested
by Brath er al. (1992) allows the parameter 6, which is
purely statistical in nature, to be linked to the parameter #;,
whose physical significance is clearly understood. Never-
theless, even if a physical interpretation of the parameter 0 is
then possible, the SM is dgrived starting from, two
statistical hypotheses, i.e. the process representing the river
discharges ¢(%) can be reduced to a (1) stationary and (2)
Gaussian process.

The river discharges ¢(t) are interpreted as a realisation
of a stochastic process in continuous time. Usually this
process is periodic on account of the intrinsic seasonality of
the phenomenon. It is, however, possible to obtain an

Table 2. Stochastic model: estimator of the reduction curve ', according to the SM for

different orders of the AR(n) process.
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Table 3. Stochastic model: relation between the fluctuation
scale parameter 0 and the lag time #;,

_u 21V

” 0= =2
n=1 0=2'tL

n=2 9=2'tL

n=3 0=16/91;

n=4% 0=8/5'IL

approximate second-order stationary series by means of the
standardisation:

X'(1) = ﬂt)g%“!* (23)

where y+ and o,+ are the periodic mean and standard
deviation, respectively. This possibility can justify, partially,
the mathematical developments producing the reduction
curve 17, which, however, are theoretically relevant to a
- fully stationary process. Moreover, the flow process ¢() is
usually non-Gaussian. It might be reduced to a process
which is approximately Gaussian by logarithmic or other
appropriate transformations. However, Bacchi et al. (1992)
do not apply them on account of the uncertainties in the
preservation of the statistical properties. In any case, their
numerical applications show that although the marginal
distribution of river flow processes is usually non-Gaussian,
the reduction curve obtained with the Gaussian hypothesis
provides a good approximation of the observed reduction
ratios, irrespective of the assumed underlying distribution
and, thus, is valid at least from a practical point of view.

Furthermore, note that the selection of an auto-regressive
process AR(#) for representing the discharge time series is
motivated by the observation of Bacchi ez al. (1992) that this
type of process “has been widely used in hydrology”. In
other words, this assumption is certainly coherent with the
stationary and Gaussian hypothesis for the time discharge
series, but its selection is due mainly to its simple
mathematical tractability in terms of the auto-correlation
function, from which the fluctuation parameter 0 (and, thus,
the reduction curve) is easily derived.

A further observation may be made with reference to the
interpretation given in Brath e a/. (1992) where the process
AR(n) is read as output of a rainfall-runoff transformation.
While this particular point of view allows for a more
physically based interpretation of the parameter 0, it
remains impossible to define a link between the reduction
curve, as expressed by the SM, and the rainfall regime
typical of the basin upstream of the section considered. This
is due to the fact that, even in the interpretation of the
process AR(n) described above, the rainfall is reduced to a
«shot noise» process in which the duration and intensity of
the rainfall events are not characterised in any way.

Finally, a difference between the papers of Bacchi ez al.
(1992) and Brath er al. (1992) can be observed. In the
former, the process ¢(z) represents the river discharge; in
the latter, it represents the component due to the surface
runoff obtained by convolution with a Gamma IUH.
However, the model application to cases in the real world
is substantially insensitive to this different interpretation of
4(t). In fact, it is relevant to extreme events where the base
component represents a very small percentage of the whole
flow discharge and so the same observations, already
developed for the GM, can be applied in this case.

Numerical application

DATA USED

The applicability and descriptive capability of the three
models were studied with reference to 12 recording gauge
stations with known rating curves, whose Apennine basins
are situated in central Italy and flow into the Adriatic sea.
The position of the stations examined and the geographical
boundaries of the Bologna sector of the S.I.M.N. (National
Hydrographic and Tide Monitoring Service) which handles
the data recording and collection service, are shown in Fig.
4. These stations, listed in Table 4 together with geo-
morphological quantities typical of the respective basins,
were selected from a series analysed in earlier regional flood
regime studies (Franchini and Galeati, 1998); together they
comprise a hydrologically homogeneous region.

It was possible to locate at least 10 years of continuous
observations at these stations from which the required data
were obtained, i.e. peak and mean annual maximum
discharge values over different durations D. These data
were evaluated either by examination of the original records
available at the headquarters of the S.I.M.N., or by entering
the recorded sets of level data and converting them to
discharge values using the relevant rating curves. The
maximum annual discharges over time intervals of assigned
duration, the discharge values pup and pgp , and the corre-
sponding reduction ratios ', were estimated for durations
up to 72 hours, since, in the basins considered, the most
significant portion of the flood events builds and recedes
over this period of time. The whole analysis refers to the
estimation of the reduction curve in terms of ratios of the
average annual maximum discharges over different dura-
tions, i.e. #'p which, as already observed, represents the
most common and preferred form in applications to cases in
the real world.

From a regional analysis of the extreme rainfall depths
relevant to different time intervals, 4, for the whole Bologna
sector of the S.ILM.N. (Franchini and Galeati, 1994) the
intensity-duration curve of the mean annual maximum values
was computed to characterise the 12 basins (Basin Intensity
Duration Curve: BIDC) (Appendix B.)

Finally, the fit of the three models to the observed re-

161



Marco Franchini and Giorgio Galeati

Valli

di
Comacchio

a4

43 4

| ] [l

T T T
1w

T
O M. Mario 1" E

Fig. 4. Representation of the boundaries of the Bologna SIMN sector and location of the twelve stations used.

duction ratios was assessed by the least squares method using
an optimisation algorithm available in the “Optimization”
TOOLBOX from MATLAB® which is based on the SQP
(Sequential Quadratic Programming) (e.g. Powell, 1983).

THE EMPIRICAL MODEL

Initially, for each station, the coefficients o and § of Eqn. 8
were estimated simultaneously, thereby obtaining the values
shown in Table 5 which also includes the mean and
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minimum value of the coefficient of determination, R, for
the 12 stations. The parameter § fluctuates between the
values 0 and 0.524, i.e. within a numerical range which,
apart from the lowest values, recalls that of the coefficient 4
(see last column of Table 5) of the intensity duration curve
BIDC.

The NERC study (1975, p. 369, Vol. I) shows that the
reduction curve is not very sensitive to the coefficient f.
Thus, one might assume that. the coefficient f coincides
with the coefficient 4 of the BIDC and then re-estimate the
coefficient o, obtaining the values shown in the fourth
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Tuable 4. Recording hydrometer stations used and associated characteristic data

n° Station nd. A L H, S N; Liea
1 Reno at Pracchia 15 41.0 133 2802 320 438 354
2 Reno at Casalecchio 25 1051.0 84.2 581.0 1.18 5562 476
3 Samoggia at Calcara 12 1700 377 331.0 193 472 648
4 Savena at Castel dell’Alpi 10 1.5 6.0 2750 7.60 87 449
5  Rio Calla Querceto 11 10,0 43 260.0 10.87 30 634
6  Quaderna at Palesio 14 219 102 1934 347 181 360
7  Lamone at Sarna/Faenza 11 261.0 53.7 461.3 1.80 1460 433
8  Ronco at Meldola 13 4420 57.5 5120 240 1580 542
9 Savio at S. Vittore 12 597.0 66.5 4835 1.64 1649 591
10  Foglia at Montecchio 15 603.0 80.0 3455 1.20 1158 727
11  Candigliano at Acqualagna 11 617.0 563 4170 138 2957 470
12 Potenza at Cannucciaro 11 439.0 584 449.0 2.21 1506 530

n°: station number.

n.d.: number of years available for calculating the annual maximum values of the peak and mean discharge over

duration D.
A: area of the basin (km?).
L: length of main stream (km).

H,,: mean height of the basin in relation to the outlet section (m).

S: slope of main stream (%).
N;: number of streams of the first order (—).

L,,..: mean length of the streams in the hydrographic network (m).

column of Table 5. With this position too, the R’ are still
very high. The parameter o obviously assumes different
values from those observed previously, so as to allow Eqn. 8
to fit the sample data.

The assumption f = b reduces the parameterisation of

Table 5. NERC model: estimation of the reduction curve
parameters

Station A B

o B o B=b
Reno at Pracchia 176  0.158 84 0473
Reno at Casalecchio 336 0.000 168 0.390
Samoggia at Calcara 244 0.000 13.6 0.331
Savena at Castel dell’Alpi 57 0457 6.1 0435
Rio Calla Querceto 39 0398 44 0367
Quaderna at Palesio 56 0455 8.0 0.340
Lamone at Sarna/Faenza 36.8 0.000 199 0.360
Ronco at Meldola 144 0317 124 0.382
Savio at S. Vittore 19.2 0.289 164 0.359
Foglia at Montecchio 274 0.327 285 0.308
Candigliano at Acqualagna 189 0.183 142 0.327
Potenza at Cannucciaro 14.7 0524 253 0.316
mean R* 0.998 0.993
minimum R? 0.994 0.984

A: estimation of parameters « and f§; B: estimation of parameter a with
B = b (b exponent of the BIDC).

the reduction curve simply to the estimation of o alone, an
advantage that becomes even more evident in a regionalisa-
tion process. In fact, the parameter # can be inferred easily
from an analysis of the rainfall data at the stations in the
basin or, as in this case, from the results of an earlier regional
analysis (Franchini and Galeati, 1994).

However, the assumption = b remains highly arbitrary;
it is not justified by any statistical or physical reasoning but
only by the practical advantage previously mentioned.
Further justifications are thus necessary but they will
become more evident after the presentation of the results
relevant to the other models.

Finally, by way of example, Fig. 5a shows the reduction
curve for the Reno at the Casalecchio station. The fit of Egn.
8 with the sample points is more than satisfactory, even
though at durations between 1 and 6 hours, these points
reveal a downwards concavity which Eqn. 8§ by its very
nature cannot represent. However, the errors at these
durations are extremely small.

THE GEOMORPHOCLIMATIC MODEL

This model is based on Eqn. 15 and requires for its
application the definition of the areal intensity duration
curve 14(d), relevant to the average annual maximum values
for different time durations 4, and the shape of the IUH.
The areal intensity duration curve 74(d) can be estimated
by using the BIDC, available for each of the 12 basins
considered, combined with the areal reduction factor
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Fig. 5. Reno at Casalecchio: comparison between the observed reduction curve (o) and the reduction curves obtained using the models. (a) EM
model (B=15); (b) GM model (Gamma IUH, ng=3), (c) GM model (Weibull IUH, nyy=1.6); (d) SM model (n=3).

ARF, 4. Thus, Eqn. 15 becomes:
—Ho _ Fig(d) E(ders) = AR ot 'dﬂ,vb_l “E(der0)

/= or,v —_
b “Q l’l'iA(d”,p) ' O’(dfﬁp) ARFd",p,A : d”aﬁb_l : o-(d”,?)
(24)

where the areal reduction factor ARF, 4 can be expressed
as:

ARFd,A =]- (] — 8_0'013A) . 8_0.6&10.33 (25)

by re-parameterising the formula of the U.S. Weather

Bureau for the area under study. As regards the IUH, -

numerous studies linking it with the geomorphological
structure of the drainage network have shown that the
Gamma distribution (Rodriguez-Iturbe and Valdes, 1981;
Rosso, 1982) and Weibull distribution (Troutman and
Karlinger, 1985, 1986) are excellent approximations of what
in scientific literature is described as the geomorphological
IUH (GIUH).

a) Gamma IUH

The expression of the Gamma IUH, indicated below by the
symbol uc(?), is as follows:

] £\ (re=1) —t/kc
volt) = s (%) )

where I'(n¢) is the complete gamma function (Abramowitz
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and Stegun, 1965). Specifically, for ng = I, uc(t) has the
exponential form characterised solely by the parameter k.
The expected value of u¢(2) is the lag time #; of the basin
linked to the parameters ng and kg by the relation
tr = nckg.

To estimate the reduction curve 7'p using the GM with
Gamma IUH, the following procedure was adopted:

o for a selected station, the BIDC with its parameter » was
identified as indicated in Appendix B, while the areal
reduction factor ARF,; 4 was calculated by applying Eqn.
25;

o the parameter n; was then set at /,2,3,4 to cover the range
of values observed in cases in the real world (Liu, 1992)
and, using a least squares algorithm, the parameter £¢ was
estimated and hence #;. The case with n; estimated
simultaneously with k¢ was also considered.

The results are shown in Table 6 together with the mean
and minimum values of the coefficient of determination, R’
for the 12 stations. Figure 5b, again with reference to the
Reno at the Casalecchio section, shows the reduction curve
obtained in the case of #g = 3. Note the ability of the GM
model to reproduce the double concavity present in the
observations.

b) Weibull IUH
The expression of the Weibull IUH, indicated below by the
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Table 6. Geomorphoclimatic model with Gamma IUH. Values of the lag time ¢z, (hours)
obtained for different values of the form parameter #;. The two columns on the right
show the values of #; and 7 estimated together.

Station ng=1 ng=2 nc=3 nc=4% tr ng

Reno at Pracchia 24 2.5 2.8 3.1 24 131
Reno at Casalecchio 3.7 38 4.2 4.7 42 296
Samoggia at Calcara 3.6 35 3.8 43 34 158
Savena at Castel dell’Alpi 22 22 24 2.6 22 110
Rio Calla Querceto 1.7 1.6 1.8 1.9 1.6 1.10
Quaderna at Palesio 3.0 2.8 3.0 33 29 110
Lamone at Sarna/Faenza 4.9 4.8 5.3 5.8 47 130
Ronco at Meldola 2.6 2.7 3.1 34 26 122
Savio at S. Vittore 3.8 38 4.2 4.6 38 1.14
Foglia at Montecchio 7.8 6.9 7.6 83 74 110
Candigliano at Acqualagna 3.4 34 3.7 4.1 33 158
Potenza at Cannucciaro 6.7 6.2 6.7 7.3 65 1.10
mean R’ 0993 098¢ 0979 0977 0.994

minimum R? 0.979 0.934 0.919 0.911 0.979

symbol u,(t), is as follows: expected value of u,(¢) is the lag time of ¢, linked to the

parameters 7, and k,, by the relation i; = ky I (I+1/n,,).

ny, {1\ t\™ The estimation of the parameters #, and k, was

up (1) = ko (E) exp [_ (g) ] 7 performed as for the Gamma IUH. Specifically, the cases

of n,, setat 1.0, 1.2, 1.6 and 2.0 were considered: finally, also

In this case too, when 7, = I, u,,(7) has the exponential form. the case in which 7, and &, were estimated simultaneously
Moreover, as was observed for the other type of IUH, the  was considered.

Table 7. Geomorphoclimatic model with Weibull IUH. Values of the lag time z;, (hours)
obtained for different values of the form parameter #, The two columns on the right
show the values of 7; and n,, estimated together.

Station np=1 n,=12 n,=16 n,=20 1 ny

Reno at Pracchia 24 23 2.5 2.8 23 121
Reno at Casalecchio 3.7 3.6 38 4.2 45 219
Samoggia at Calcara 3.6 33 34 38 33 129
Savena at Castel dell’Alpi 22 2.0 2.1 2.3 21 110
Rio Calla Querceto 1.7 1.6 1.6 1.7 1.6 1.10
Quaderna at Palesio 3.0 2.7 2.6 29 28 110
Lamone at Sarna/Faenza 49 4.6 4.7 52 46 1.18
Ronco at Meldola 2.6 2.6 2.7 3.1 26 115
Savio at S. Vittore 3.8 36 3.8 42 37 110
Foglia at Montecchio 7.8 6.8 6.7 74 72 110
Candigliano at Acqualagna 3.4 3.2 33 3.7 32 1.30
Potenza at Cannucciaro 6.7 6.0 6.0 6.5 6.3 1.10
mean R’ 0.992 0.990 0.980 0.975 0.994

minimum R? 0.969 0.959 0.923 0.905 0.979
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Tuable 8. Stochastic model. Estimations of the fluctuation scale parameter 6 (hours) obtained for different
orders of the process AR(7) and corresponding estimations of the lag time ¢, (cf. Table 3).

Station n=1 i n=2 173 n=3 tr n=4 t
Reno at Pracchia 6.52 33 5.94 3.0 5.84 33 5.80 3.6
Reno at Casalecchio 10.23 5.1 9.08 4.5 8.88 5.0 8.80 5.5
Samoggia at Calcara 7.19 3.6 6.54 33 6.43 3.6 6.39 4.0
Savena at Castel dell’Alpi 427 2.1 393 2.0 3.87 22 3.84 2.4
Rio Calla Querceto 2.42 1.2 2.25 1.1 2.22 1.3 2.21 1.4
Quaderna at Palesio 4.19 2.1 3.86 1.9 3.80 2.1 3.78 24
Lamone at Sarna/Faenza 11.26 5.6 9.92 5.0 9.70 5.5 9.61 6.0
Ronco at Meldola 7.36 3.7 6.64 33 6.52 3.7 6.47 4.0
Savio at S. Vittore 9.26 4.6 8.23 4.1 8.06 4.5 7.99 5.0
Foglia at Montecchio 14.40 7.2 12.37 6.2 12.04 6.8 1191 7.4
Candigliano at Acqualagna 7.41 3.7 6.69 3.3 6.57 3.7 6.52 4.1
Potenza at Cannucciaro 12.60 6.3 11.20 5.6 10.92 6.1 10.80 6.8
mean R? 0.994 0.988 0.985 0.984
minimum R? 0.983 0.950 0.938 0.933

The results are shown in Table 7. Figure 5¢ shows the
reduction curve obtained in the case of n,, = 1.6.

THE STOCHASTIC MODEL

Although the parameter § may be estimated via an analysis
of the auto-correlation function with reference to the series
of continuous discharge values in the section under study,
the simplest way to estimate it, as suggested by Bacchi et al.
(1992), is by the application of the least squares method,
seeking the 6 value which best fits Eqn. 20 to the observed
values of the reduction ratios 7'p.

Table 8 shows both the values of 8 obtained for different
orders # of the auto-regressive process and the correspond-
ing estimations of #7, obtained using the relations presented
in Table 3. Figure 5d shows the reduction curve obtained in
the case of n = 3. Note that this model, like the geomorpho-
climatic model, also reproduces the double concavity in the
observed reduction curve.

Comparison of the results produced
by the various models

REPRODUCTION OF THE DOUBLE CONCAVITY IN
THE OBSERVED REDUCTION CURVE

The presence of a double concavity in the observed
reduction curve is due to the fact that the values ug are
very near to fio when D is relatively small (note, in fact that
Kop Do Mo), while they decrease when D is large.
Furthermore, the double concavity is more evident in the
case of large basins and less evident or even absent in the
case of small basins; small basins are characterised by peaked
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and narrow flood waves, while large basins are characterised
by smoothed and long flood waves. In the former case, the
difference between p1p and ig  is pronounced right from the
smallest values of D and the reduction curve tends to show a
dominant upward concavity. In the latter case, uo  tends to
drop for relatively large values of D and this causes the
double concavity.

The EM cannot reproduce the double concavity since it
is a simple curve with only one curvature. However, the
error is extremely small, at least for the basins considered in
this study.

The GM is able to reproduce this double concavity
because its formulation is based on a (simple) rainfall-runoff
representation thus capturing the main features of the
response of a basin.

Finally, the ability of the SM to reproduce the double
concavity has the same explanation as for the GM because
the discharge time series ¢(7) can be interpreted as the result
of a rainfall-runoff transformation. Furthermore, from a
point of view of the “fitting” to a set of data, the expressions
of the reduction curve given by SM and collected in Table 3
are largely flexible.

THE GEOMORPHOCLIMATIC MODEL: GAMMA IUH VS
WEIBULL IUH

Table 6, which refers to the case of the Gamma IUH, shows
a slight but systematic decrease in the mean value of R? from
ne =1 to ng = 4. However, the case of #nc =1 gives rise to
an TUH with an exponential form that is ill-equipped to
represent the response of a basin to a spatially distributed
rainfall event, because it produces a response hydrograph
for the whole basin which does not start from zero.
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Therefore, even though the optimisation procedure slightly
favours the exponential IUH, it was decided to focus
attention on the cases characterised by #g > 1, especially as
the differences in terms of R? are very small. Recent studies
(Liu, 1992) show that limiting values of n; fluctuate
between 2 and 3 and that #; = 3 is the limiting value in the
case of a purely Hortonian drainage network. This latter
value was, therefore, taken as representative of the results
for the GM model with Gamma IUH. In this respect, the
values of the lag time for ng = 3 are statistically representa-

tive of those obtained with the other values of n¢ (Fig. 6a).

In the case of the GM model with Weibull IUH (Table
7), a slight but systematic decrease was also observed in the
mean value of R* from n, =1 to n, =2, in line with what
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was observed in the previous case. Excluding the case n,, = 1
(exponential IUH) on the basis of the considerations set
forth above, it can be seen in Fig. 6 that the values of the lag
times #;, obtained for the various values of #,, are consistent
both with each other and with those obtained in the case of
the Gamma IUH with ng = 3.

In conclusion, these results show that the lag time is the
only parameter of the [UH to be identified with the greatest
accuracy, whereas the shape of the ITUH remains without
clear definition since the parameter ng (n,,) can indiscrimi-
nately assume values in the range of ng = I-4 (n, = 1-2).
In confirmation of the above assertions, Fig. 7 shows
different IUHs with reference to the Reno at the
Casalecchio section: significantly different shapes of [UH
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Fig. 6. Relations between lag times t;, inferred using the various models examined. The x-axis shows the value of the lag time 1y, for the GM model
(Gamma IUH, ng = 3). The indication “free” means that the parameters ng and ny are not a priori defined (see also Tables 6 and 7).
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Fig. 7. Reno at Casalecchio: graphs of the IUH's (Gamma: unbroken
line; Weibull; broken line) identified with the GM model.

correspond to virtually equivalent lag times (cf. Tables 6
and 7).

THE GEOMORPHOCLIMATIC MODEL VS THE
STOCHASTIC MODEL

Table 8 shows a slight but systematic decrease in the mean
value of R? from n=1 to n=4, in line with what was
observed for the GM model with Gamma IUH, with which
the stochastic model has a point of contact in the shape of
the TUH. The validity of the interpretation provided by
Brath et al. (1992) is confirmed by the fact that the lag times
17, obtained using the formulae in Table 3, are statistically
consistent, as proved by the tests of hypothesis made on the
angular coefficient of those equations, with those obtained
from the GM model with Gamma IUH. Specifically, Fig. 6¢
shows the values of #; in the case of #n =23 versus the
corresponding values obtained with the GM model
(Gamma IUH, n¢ = 3).

THE EMPIRICAL MODEL VS THE
GEOMORPHOCLIMATIC MODEL

The values of the parameter o of the EM (with f =5) and
the values of ¢;, for the GM (Gamma IUH, n; = 3) reveal a
linear link (Fig. 8), demonstrating that this parameter too is
the expression of a characteristic basin response time.

The choice of setting = b and calibrating the parameter
o alone is preferred because the statistical relationship
between o and the time lag #; does not exist when o is
estimated simultaneously with the parameter f (see the
values of o in the second column of Table 5). Indeed, the
parameter o has a time dimension and, given the structure of
the equation representing the EM, is expected to have small
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Fig. 8. Linear regression between the lag time t; obtained using the
GM (Gamma IUH, ng = 3) and the parameter o of the EM (f = b).

(large) values when the reduction curve decreases quickly
(slowly). This behaviour of the reduction curve is, in turn,
typical of the small (large) basins which are characterised by
small (large) time lag ¢;. Thus, a statistical correlation is
expected between the parameter o and the basin response
time. However, such a correlation may be masked or even
lost when the parameters o« and f are estimated simulta-
neously by an automatic and blind calibration procedure. In
fact, the mutual interaction between the two parameters can
drive the calibration procedure towards an unfortunate
region of the two-dimensional domain of the objective
function, where the values of the parameter o are completely
non-correlated with the response time of the basin.

To avoid this negative consequence of the reciprocal
influence of the two parameters, f should be fixed to a
reasonable value, while only « is calibrated (see the mean of
the values of § in the third column of Table 3). However,
better results, i.e. a more evident correlation between « and
the time response of the basin, were obtained by setting
equal to the coefficient & of the BIDC.

To summarise, the choice of setting f = » and calibrating
the parameter « alone highlights the link between a and the
time response of a basin and so facilitates a possible
regionalisation of the reduction curve expressed by the EM.

Summary of comparisons

INTERPRETATION OF THE /; ESTIMATIONS
OBTAINED USING THE VARIOUS MODELS

All the models, though characterised by their own distinct
theoretical and formal attributes, lead systematically to the
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Table 9. Comparison of lag time estimations 7; (hours)
obtained using the Gamma GM with ng =3 and values
obtained using the formulae proposed in the literature.

Station 1 2 3 4 5
Reno at Pracchia 28 14 23 42 24
Reno at Casalecchio 42 53 146 126 117
Samoggia at Calcara 38 30 64 77 46
Savena at Castel dell’Alpi 2.4 0.7 09 23 14
Rio Calla Querceto 1.8 0.6 06 18 1.1
Quaderna at Palesio 30 1.2 1.8 36 1.6
Lamone at Sarna/Faenza 5.3 3.4 87 92 54
Ronco at Meldola 31 37 82 89 71
Savio at S. Vittore 42 44 107 104 79
Foglia at Montecchio 76 58 140 122 8.1
Candigliano at 37 45 100 100 84
Acqualagna

Potenza at Cannucciaro 6.7 4.1 86 92 638

Key:
1: lag time t;, (hours) for GM with Gamma IUH and ng =3
2.4, = 0'4% (Giandotti, 1940) with 4 in km?, L in km

and H,, in m 079
3: 1, = 0.000326 - <—) (Watt and Chow, 1985) with L in m and

VS

dimensionless .S

0.47
41, =28- <%> (NERC, 1975) with L in km and .S in m/km
S:4, = % (Troutman and Karlinger, 1985) with L,,.;in m

and ¢ (flood wave celerity) for all the basins assumed to be 1.5 m/s.

same values of the lag time, #;. Since different methodo-
logical approaches produce the same estimates, it might be
assumed that these estimates are at least /tkely. However,
any verification of this assumption would require knowledge
of the true values of ¢z, which can only be estimated. In
strictly logical terms, if the true value is not known or if
criteria for appraisal such as those used for the statistical
estimators are unavailable, it is impossible to say how
reliable these estimates are or if they are more reliable than
those obtained by applying the formulae proposed in the
literature (Table 9) or rainfall-runoff models.

More specifically, with reference to this latter type of
model, the lag time estimates obtained on the basis of the
observed hourly areal rainfall and discharge data for the
Reno at the Casalecchio and Candigliano at the Acqualagna
stations, are systematically higher (about double) than those
produced by the reduction curves analysis. These differ-
ences were observed both by analysing individual flood
events using different methods of computing the hyeto-
graph of net rainfall and separation of the runoff compo-
nents in the observed flood wave (Chow ez 4l., 1988), and

also by applying a continuous-type rainfall-runoff model
(ADM model, Franchini, 1996).

Basically, the lag time values required for a good
representation of the reduction curve cannot be estimated,
with confidence, using the traditional formulae available in
the literature, nor, in general, are they the ones which would
be required to characterise the IUH of a rainfall-runoff
model. Moreover, it is impossible to say whether one or the
other is more or less accurate or likely. Accordingly, the lag
time, 77, referred to so far, characterising the position of the
centre of mass of the transformation IUH involved directly
(GM) or indirectly (EM, SM) in the formulation of the
reduction curve model, must be considered in the broader
sense as a “reference time” typical of the response of the
generic basin.

OBSERVATIONS ON THE APPLICABILITY OF THE
THREE MODELS

The geomorphoclimatic model (GM) needs the computa-
tion of the areal intensity-duration curve which, in general,
requires the performance of a preliminary regionalised
rainfall analysis thus providing the BIDC. Furthermore,
knowledge of the areal reduction factor ARF, 4 is necessary
and the type of IUH (e.g. Gamma or Weibull) must be
selected. However, this study established that the choice of
type of IUH and the shape parameter is not significant; thus,
in practical applications it is possible to assume a priori both
the type of IUH, e.g. Gamma, and the value of the shape
parameter, e.g. #g = 3. The only parameter to be estimated
is ;. Where experimental data are available, #; is
determined using the optimisation procedure described;
where a regionalisation process is necessary, #;, could be
estimated with statistical formulae using the geomorpho-
logical characteristics typical of the basin as independent
variables (see Tables 4 and 9). However, to obtain
operationally acceptable results, these formulae should be
re-parameterised using the values of t; obtained from the
reduction curves for the stations present in the region under
study, as done in Franchini and Galeati (1998).

Lastly estimation of the parameters of the IUH (Gamma
or Weibull) based on the criterion of maximising the
outputs is not a simple matter and computation times can be
quite considerable, even when automatic optimisation
procedures are employed.

As far as the empirical model (EM) is concerned, on the
assumption that f = b (b: exponent of the BIDC), the only
parameter to be estimated is &, which thus assumes values
closely linked to the parameter #;. If, on the other hand,
both parameters are estimated, the values of o are highly
variable (cf. Table 5) and the statistical link with #; is lost. If
it is necessary to carry out a regionalisation, the choice of f8
= b is therefore preferable since, otherwise, there would be
no possibility of defining the statistical link between « and
the geomorphological characteristics of the basin.
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To sum up, the geomorphological model and the
empirical model always require knowledge of the BIDC.
The geomorphological model also requires knowledge of the
factor ARF, 4, which, to be reliable, must be parameterised
over the region under study, and this information is not
always readily available.

Given the dependence of both models on the BIDC, the
effect of an error in the evaluation of the coefficient  on the
estimation of « was assessed in the case of the EM model,
and of the lag time in the case of the GM. This coefficient 5
was altered by £ 10% and &+ 20% in relation to the values
set out in Table 5 and the parameters a (EM) and ¢, (GM)
were estimated. In particular, for the GM model with
Gamma IUH and ng = 3, an increase (decrease) of 10-20%
in b corresponds to a decrease (increase) in the lag time of
approximately /2—24%; similar variations were observed for
the parameter o in the EM model. These variations can be
explained by observing that an increase in the parameter, 5,
affects precipitation to a growing degree as its duration, 4,
increases. It follows that, if the lag time, #;, is left
unchanged, the reduction curve will tend to rise particularly
in the part relevant to the longer time durations, D. Thus,
for the reduction curve to remain as far as possible
unchanged (so fitting the observed ratios), the lag time
must be reduced. In this way the peak discharge for D=0
increases, thereby offsetting the previously highlighted
increases in the average discharges relevant to the longer
durations.

Lastly, with regard to the stochastic model, only the
parameter 0 has to be estimated. Moreover, its link with #;,
facilitates the search for a relation with the standard
geomorphological parameters, though without diminishing
the objective difficulties always encountered in such
analyses and which, in any case, are independent of the
model used to reconstruct the reduction curve.

Conclusions

The application of the three different models, empirical,
geomorphoclimatic and stochastic, for synthesising the
reduction curve, expressed as ratios of the mean of the
maximum annual discharges over different durations, in
twelve basins situated in central Italy, allows the following
conclusions to be drawn:

e all the models allow a satisfactory construction of the
observed reduction curves;

o the stochastic model is the simplest to apply since it
requires only the estimation of the parameter § which is
closely linked to the “lag time” #7;

o the empirical model is defined by just two parameters
which can be estimated by fitting it to the observed
reduction ratios over different durations. However, it is
preferable to assume 8 = b, where 5 is the exponent of the
Basin Intensity Duration Curve (BIDC). This assumption
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implies a prior regional analysis of the precipitation, yet it
facilitates the parameterisation of the model and the
parameter « is thus closely linked to the “lag time” #;;

o the geomorphological model presents the greatest appli-
cation difficulties because it requires a larger amount of
data (in addition to the BIDC, the Areal Reduction Factor
of the precipitation ARF,; 4 is also required), and because
of the relatively time-consuming computation method
(least squares coupled with the output maximisation
technique). With regard to its parameterisation, the
choice of IUH type (Gamma or Weibull) and the value
of the shape parameter appears to be irrelevant, as the
only significant parameter is #;;

These considerations show the importance of the “lag
time”, #;, in the parameterisation of the three models.
However, the values of 7; obtained using several formulae
proposed in the literature generally differ from those
obtained by fitting the models of the reduction curves to
the observed ratios. It follows that these formulae cannot
be used with confidence for parameterising the models of
the reduction curves. A similar conclusion is reached
where the value of 7; is obtained using rainfall-runoff
models.

In other words, the parameterisation of the rainfall-runoff
models does not produce results that can be used for
synthesising the reduction curves and vice versa, while the
formulae proposed in the literature can be used only after
re-calibrating them directly on the values of ¢;, obtained by
fitting the observed reduction ratios. This means that the
values of #; estimated through the models of the reduction
curve should not be interpreted as estimates of the basin
“lag time”, according to the standard definition, but as a
more general “reference time”, characteristic of the
response of the basin in the framework of the reduction
curve analysis.
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Appendix A
The discharge gp(t,4), which represents the mean discharge

over the time interval of duration D starting at the instant 7
and referring to a flood wave produced by a net areal rainfall

¢ -i4(d), can be written, on the basis of Eqn. 11, as:
‘ 1 t+D
wlt,d) =5 / o(z, )iz
t

1 t+D
=5/ ¢0-isd)-AS(t,d)-A-dc (Al
t
Assuming:
t
IAS(t,d) =L / AS(z, d)dz;
D J,

A(IAS) = % [IAS(t + D, d) — IAS(1,d)] (A2)

Eqn. Al becomes:

p(t,d) = ¢ -is(d) - A(IAS) - 4 (A3)

Following the same steps as those described for the flood
peak, the following statements can be made:

o for an assigned rainfall duration 4, the maximum value
dDmax Of gp(2,d) is obtained at the instant #;, when the
difference A(JAS) is at its maximum value;

o there is a critical precipitation duration d = d,,, (usually
different from 4, ,) at which the product i4(d)- A(JAS) is
at its maximum value: if ¢}, indicates the instant
corresponding to ¢} ., (€. the maximum value of
4D,max), thus Eqn. A3 can be re-written as:

qD(tz)ﬁ dﬂ,v) = q;),max
1 . N
= B{(p : ’A(dcr,v) ‘ [IAS(tD + D, dcr,v)
- IAS(t;)’ dcr,v)] ' A}
=0 iA(dcr,v) . E(dcr,v) - A
(A4)

where E(d,,,) is a function similar to the peak function
relevant to the flood peak.

Appendix B

The intensity-duration curve is generally expressed by the
following equation:

h=a-d (B1)

To use this equation to express the mean value of the
maximum annual precipitation for duration 4, the following
expression is more appropriate:

my = m1 . db (BZ)

where m; and b are two parameters variable from site to site,
with m; representative of the mean value of the maximum
annual precipitation of one hour’s duration. Introducing the
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ratio . = m/mp4 between the mean maximum daily pre-
cipitation and the mean maximum precipitation over the 24
. hour period, it follows from B2 that:

In(m, In(y) — In(m
mas = m/y = my - 24 = b= ,‘(‘ c) m((;)) - (m1)
(B3)
and therefore:
In{mg)~Ia(a) ~tn(my)
myg = m * d_g_hl:b%_-—L (B4)

The estimation of m, thus comes down to the estimation of
the mean maximum daily precipitation m and thé mean
maximum hourly . precipitation m;, assuming y to be
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constant over the region under study (y £ 0. 90 across’ the
whole of Italian national territory).

Equatlon B4 represents. what is described in the text
as the “imtensity duration curve of the mean annual
maximum values of the basin” (BIDC) Spemﬁcally, one
possible procedure: for calanhtmg the exponent b is as
follows:

o the centroid of the basin is identified; -

‘» at this point the value’ of ‘the anmual maximum ramfall of
one day mg and one, hoj ¥ my' 8 estinmated, based on
isolines of these quantities; Franchini and Galeam, (1994)
produce ' these isolines wfth rofcrmce to t:lit Bolngna
sectorof’théSIMN’ ‘ o

° formula (Ba) 1s uud ¢o estumte 17




