Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Volume 4, issue 2
Hydrol. Earth Syst. Sci., 4, 215-224, 2000
https://doi.org/10.5194/hess-4-215-2000
© Author(s) 2000. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Process Representation in hydrological Models

Hydrol. Earth Syst. Sci., 4, 215-224, 2000
https://doi.org/10.5194/hess-4-215-2000
© Author(s) 2000. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Jun 2000

30 Jun 2000

Multi-criteria calibration of a conceptual runoff model using a genetic algorithm

J. Seibert J. Seibert
  • Oregon State University, Department of Forest Engineering, 213 Peavy Hall, Corvallis, OR 97731, USA
  • e-mail for corresponding author: jan.seibert@orst.edu

Abstract. Abstract: Calibration of a model against more than one output variable is important for reliable simulations of internal processes. In this study, a genetic algorithm combined with local optimisation was proposed for automatic single- and multi-criteria calibration of the HBV model, a conceptual runoff model. The model and the optimisation algorithm were applied in two catchments with different geology where, in addition to observed runoff, time series of groundwater level data were available. For a theoretical, error-free test case with synthetic data, the optimisation algorithm was usually able to find the true parameter values. For the real-world case, parameter values varied considerably when calibrating against runoff only. However, parameter values were constrained significantly when calibrating against both runoff and groundwater levels. Furthermore, for one of the catchments, the results of the multi-criteria calibration motivated a modification of the model structure.

Keywords: Multi-criteria calibration; genetic algorithm; parameter uncertainty; conceptual runoff models; HBV model; groundwater levels

Publications Copernicus
Download
Citation