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Abstract
Time-series analysis techniques for improving the real-time flood forecasts issued by a deterministic lumped rainfall-runoff model are presented.
Such techniques are applied for forecasting the short-term future rainfall to be used as real-time input in a rainfall-runoff model and for
updating the discharge predictions provided by the model. Along with traditional linear stochastic models, both stationary (ARMA) and non-
stationary (ARIMA), the application of non-linear time-series models is proposed such as Artificial Neural Networks (ANNs) and the ‘nearest-
neighbours’ method, which is a non-parametric regression methodology. For both  rainfall forecasting and discharge updating, the
implementation of each time-series technique is investigated and the forecasting schemes which perform best are identified. The performances
of the models are then compared and the improvement in the efficiency of the discharge forecasts achievable is demonstrated when i) short-
term rainfall forecasting is performed, ii) the discharge is updated and iii) both rainfall forecasting and discharge updating are performed in
cascade. The proposed techniques, especially those based on ANNs, allow a remarkable improvement in the discharge forecast, compared
with the use of heuristic rainfall prediction approaches or the not-updated discharge forecasts given by the deterministic rainfall-runoff model
alone.

Keywords:  real-time flood forecasting, precipitation prediction, discharge updating, time-series analysis techniques

Introduction

All over the world, damage caused by flood and flash-flood
events, in terms of both number of casualties and economic
costs, increases steadily; it now ranks high among weather-
related natural hazards. In Italy, the archive of the National
Research Council’s AVI project (an acronym for Aree
Vulnerate Italiane, Areas Affected by Landslides or Floods
in Italy) of the National Group for the Prevention of
Hydrogeological Disasters identified as many as 7178 flood
events all over the country between 1918 and 1994, and
42.5% of the Italian municipalities were affected.

The development of data acquisition systems based on
telemetry and satellite communication systems coupled with
the increase in availability of computer resources enhances
significantly the potential for providing real-time flood
warning through flow forecasting methodologies, using
current information on the river basin state. For small
mountain catchments, where steep slopes shorten the

response time of the catchment to hours or even less (flash-
floods), a prediction based solely on hydrometric
measurements does not allow a lead-time long enough to
take effective precautionary measures. Modelling of the
rainfall-runoff transformation enables the hydrological
forecast to be derived not only from past observations but
also from forecasts of precipitation on the upper catchment.

The rainfall-runoff modelling approaches generally used
for real-time flood predictions in small and medium size
basins are either black-box (or system-theoretic) or
conceptual. Black-box models do not describe the
hydrological processes occurring within the catchment, even
in a simplified manner; on the other hand they can be
formulated easily in an adaptive framework which has made
their application extremely appealing in hydrological
practice. Conceptual models, on the other hand, allow a
description of large spatial and temporal scale conservation
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and response laws that are in accordance with the observed
large-scale behaviour of water in hydrological drainage
basins, and hydrologists have now recognised that such
models are more able to forecast under out-of-sample
conditions, by comparison with black-box modelling (e.g.
Brath and Rosso, 1993).

In the present work, the use of time-series analysis
techniques for real-time improvement of the forecast
provided by a conceptual deterministic rainfall-runoff model
is presented.

A first attempt to improve discharge predictions is through
the incorporation of a Quantitative Precipitation Forecasting
(QPF) scheme. In fact, a discharge forecast based solely on
rainfall observed up to the forecast time (and this framework
is often implicit in operational flood forecasting practice)
tacitly implies a prediction of no more rain and such a
prediction is the worst possible in the course of a severe
storm (Krzysztofowicz, 1995). Obtaining a reliable QPF,
especially at a temporal and spatial resolution compatible
with hydrological forecasting needs, is extremely difficult
and great uncertainties still affect the performance of
physically-based rainfall prediction models (Brath, 1999).
In addition, the rainfall generation process is a very complex
dynamic system, involving many interconnected control
variables that have to be monitored at a very fine scale. A
considerable amount of high quality data on a fine temporal
and spatial grid would be needed for accurate deterministic
rainfall forecasts; such information is rarely available. A
possible alternative is to perform the short-term precipitation
forecasts by means of univariate time-series analysis
techniques (Brath et al., 1988; Burlando et al., 1993), thus
allowing quick forecasts with the requirement of only a
moderate amount of data of the current event. An additional
advantage is that a model generating forecasts in a format
suitable for direct input to a hydrological model, rather than
requiring significant human and/or computer intervention
to convert it to a hydrologically useful format, would be
extremely useful in a real-time framework. Even if rainfall
time-series are generally characterised by very low
persistence in time, the driving force for most flash floods
is heavy rain that persists over an area for a few hours.
Maddox (1979) states that flash floods are associated with
convective storms of a quasi-stationary nature, characterised
by a focusing over a certain area (Georgakakos, 1986). In
Mediterranean mountainous regions, too, the flooding risk
becomes actual when the storm area remains nearly
stationary for several hours. A typical catastrophic flood in
the Mediterranean region is the consequence of outlying
storms characterised by low variability of rainfall intensity
in time and space (Rossi and Siccardi, 1988). In addition, if
rainfall depths are averaged over the catchment before the

time-series processing, the efficiency of the rainfall forecasts
is improved, compared to the forecasts issued for each one
of the gauges separately before averaging the results,
because of the greater variability of point precipitation rates
(Burlando et al., 1993; Georgakakos and Hudlow, 1984).
Hence, potentially dangerous storm events are characterised
by a higher persistence in time in comparison with more
frequent events so that time-series analyses exploiting such
persistence seem to be adequate for the prediction of spatially
averaged extreme rainfall intensities at an hourly time scale.

In addition to input uncertainty, the forecasts are subject
to uncertainties in both model structure and parameter
values. The uncertainty introduced by the sources mentioned
above may result in biased discharge forecasts, as shown
by the difference between the simulated hydrograph and
that actually measured up to the forecast time. A
considerable degree of persistence was highlighted in the
analysis of the errors of the discharge simulations generated
in the present study; the plot of the sample autocorrelation
function of the discharge error series (Fig. 1), suggests that
coupling a deterministic rainfall-runoff model with a parallel
simulation error-forecasting model, based on the latest error
observations may improve the forecast. Output updating
procedures are computationally simple and well established
in operational hydrological practice (Moore, 1983) and their
key advantage is the simplicity of application in a totally
automated way to any rainfall-runoff model, no matter how
complicated, without any need to alter its structure and
physical meaning, or its operational implementation.

The paper describes the coupling of a deterministic
rainfall-runoff model with univariate time-series analysis
techniques used both for forecasting the future rainfall values
to be provided as input to the hydrological model and for
updating the discharges issued by the model. A real-world
case study is developed to assess the improvement in
discharge forecasts using linear stochastic processes,
Artificial Neural Networks and the non-parametric nearest
-neighbours method for rainfall forecasting and for
discharge updating, applied separately and in cascade.

The investigation of non-linear time series analysis
techniques (neural networks and nearest-neighbours
method) is suggested by the observation that temporal
variations in hydro-meteorological data often do not exhibit
simple regularities and linear recurrence relations and their
combination for describing the behaviour of such data is
often  inadequate. In addition, such techniques belong to
the data-driven approaches, where no  relationship between
known parameters and observed values has to be
hypothesised and no knowledge of the underlying process
is needed.
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The analysed time-series analysis
techniques
LINEAR MODELS

Linear stochastic processes are among the most widely used
time-series techniques for modelling water resources.
Frequently used are the AutoRegressive Integrated Moving
Average models, denoted as ARIMA(p,d,q) models, where
p and q are, respectively, the autoregressive and moving
average orders and d is the order of differentiation, that is
the number of differentiations operated on the original series
to handle possible non-stationarities (Bras and Rodriguez-
Iturbe, 1985). The differencing reduces the ARIMA to
simple AutoRegressive Moving Average (ARMA) models,
describing each  observation of a time-series xt as a weighted
sum of p previous data and the current as well as q previous
values of a white noise process. Using the Box and Jenkins
notation, the ARMA(p,q) model can be written symbolically
in the compact form:

tt BxB η)()( Θ=Φ (1)

where xt is the zero-mean time-series; ηt  is a white noise,
i.e. an independent zero-mean random variable that is also
not correlated with the past values of xt; Φ and Θ are
respectively the pth and qth order autoregressive and moving
average components and B is the backward shift operator,
defined so that Bj xt = xt-j.

Analogously, the ARIMA(p,d,q) model can be expressed
as:

(2)

where d is the order of differentiation of the original data,
that is the minimum non-negative integer necessary to obtain
a stationary process by differencing the original series.

The method here applied for the estimation of the
parameters is an approximation in the spectral domain of
the Gaussian maximum likelihood function, which was first
proposed by Whittle (1953). This approximation provides
asymptotically consistent and normally distributed
estimators of the unknown parameters for both Gaussian
and non-Gaussian series. Beran (1994) gives a detailed
description of this parameter estimation method.

In the following applications, it was preferred to perform
no preliminary transformation of the data to make them as
close to Gaussian as possible. In fact, Gaussianity of the
data is not required for the forecast application of ARIMA
models, since they provide the best linear prediction even
in the non-Gaussian case (Brockwell and Davis, 1987).

For rainfall prediction, the application of low-order
ARIMA models was considered, following the modelling
framework proposed by Brath et al. (1988) and Burlando et
al. (1993). Such a choice is justified by the findings by
Obeysekera et al. (1987), who proved that the correlation
structures of certain point process models for rainfall
modelling, both burst and cluster based (Rodriguez-Iturbe,
1986), are equivalent to the correlation structures of low-
order ARMA models.

As far as discharge updating is concerned, almost all the
updating approaches implemented both in the literature and
in practice are based on linear stochastic processes, because
they are easy to programme and do not require much
computational effort (Moore 1983; Kachroo, 1992).

tt
d BxBB η)()1)(( Θ=−Φ
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Fig. 1. Plot of the sample autocorrelation function of the hourly discharge error series
of the case study validation data set
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NON-LINEAR TIME-SERIES ANALYSIS METHODS

AutoRegressive Moving Average models (ARMA and
ARIMA) assume linear relationships among past and present
values of the analysed variable, but temporal variations in
real-world data often do not exhibit linear behaviour.
Therefore, non-linear forecasters, namely Artificial Neural
Networks (ANNs) and the nearest-neighbours methods are
presented in this work.

Artificial Neural Networks (ANNs)

The predictive potentiality of Artificial Neural Networks
(ANNs) is widely acknowledged and applications to a
variety of problems, including simulation and forecasting
of hydro-meteorological variables, have been presented in
the literature. Most are dedicated to the prediction of river
flows (at a time scale ranging from one year to one hour)
both using only past flow observations (for example, Raman
and Sunilkumar, 1995) and with exogenous input, that is,
based on the knowledge of previous rainfall depths (and
possibly other meteorological variables) along with past
observed flows  (amongst others, Hsu et al., 1995; Minns
and Hall, 1996; Abrahart and Kneale, 1997; Shamseldin,
1997; Dawson and Wilby, 1998). The use of ANNs for
rainfall forecasting and for simulation error forecasting has
not been fully explored, as yet. In the rainfall forecasting
field, extremely interesting applications were presented by
French et al. (1992) and Kuligowski and Barros (1998).
The present approach differs because the interest is here
focused mainly on the hydrological use of rainfall forecasts:
the scheme implemented provides a spatially averaged
rainfall forecast for lead-times from one to six hours, directly
usable as input to the rainfall-runoff lumped model; the only
information used as input to the ANNs is the real past rainfall
observations preceding each forecast instant.

Neural networks emulate the biological nervous system’s
computational capacity by distributing computations to
processing units called neurons, which are densely
interconnected. The neurons are grouped in layers and
adjacent layers are connected through synaptic links
(weights). Three different layer types can be distinguished:
an input layer, connecting the input information to the
network (and not carrying out any computation), one or more
hidden layers, acting as intermediate computational layers,
and an output layer, producing the final output. In
correspondence of a computational node J (Fig. 2), each
one of the Nj entering values (IJi) is multiplied by a
connection weight (wij). Such products are then all summed
with a neuron-specific parameter, called bias (bj), used to
scale the sum of products into a useful range. The
computational node finally applies an activation function

(f) to the above sum to produce the node output (OJ).
Weights (wij) and biases (bj) are determined by a non-

linear optimisation procedure (training) that minimises a
learning function expressing a closeness between
observations and ANN outputs, in the present case the mean
squared error. A set of observed input and output (called a
target to be distinguished from the network final output)
data pairs, the training data set, is processed repeatedly,
changing the values of the parameters until they converge
to values such that each input vector produces output values
as close as possible to the desired target vectors. The final
weights and biases of a successfully trained neural network
represent its knowledge about the problem, knowledge that
the network was not assumed to have a priori.

Unfortunately, no definitive established methodology
exists to deal with the neural network modelling problem,
because the optimal network architecture and characteristics
are highly problem-dependent. In the present work,
preliminary forecast analyses were performed on rainfall
and simulation errors corresponding to a few storm events,
to test different network architectures and properties: training
algorithm, types of connection between the nodes, number
of hidden layers and multistep ahead prediction schemes.

The popular and extensively tested BackPropagation (BP)
training algorithm and several of its variants were examined.
The BackPropagation algorithm is a supervised learning
method in which the output error (difference between the
network output and the target) is fed back through the
network, using the gradient of the learning function to
determine how to adjust the weights to minimise the error.
To speed up the convergence rate, modifications to the basic
steepest descent algorithm have been proposed recently,
often borrowed from optimisation theory, like the
Levenberg-Marquardt algorithm, a quasi-Newton method
that proved to be the quickest and was less easily trapped in

bj
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local minima among the algorithms tested; it was, therefore,
chosen for the modelling applications in the present work.

The possibility of different feedforward and feedback
connections between the nodes was considered, leading to
the choice of a classic multi-layer feedforward network
(where only feedforward connections to adjacent layers are
allowed, so that the information flows in only one direction,
from the input through the hidden up to the output layer),
because the addition of other types of connections between
the layers (feedback and cascade-forward) required longer
training times and more random initialisations of the
parameters to provide substantially equivalent results.

The ‘Universal Approximation Theorem’ (Hornik et al.,
1989) proves that only one layer of hidden units “suffices
to approximate any function with finitely many
discontinuities to arbitrary precision”, provided that the
activation functions of the hidden units are non-linear and a
sufficient number of hidden units is available. These results
establish multilayer feedforward networks as a class of
universal approximators. Provided that at least one hidden
layer is present, there is no theory yet to tell how many
hidden layers are needed but Zealand et al., (1999) noticed
that the addition of hidden layers often fails to provide a
noticeable improvement in the out-of-training forecasting
application and a much longer training time is needed in
comparison with the use of only one hidden layer. Networks
formed by only one hidden layer were, therefore, tested.

Activation functions are needed for introducing non-
linearity into the network and it is the non-linearity that
makes multilayer networks so powerful. The exact form of
the activation function is not critical, as long as it is bounded
and it increases monotonically (Kuligowski and Barros,
1998). In the present work, one of the most widely used
non-linear activation functions was chosen for the hidden
nodes, that is a tan-sigmoidal unit

(3)

where I is the input to the node, that is the sum of the
weighted products of outputs from previous nodes and of
the bias of the node, and f(I) is the node output. For the
output layer, instead, a linear transfer function was chosen.
It was, in fact, preferable to choose an output activation
function suited to the original distribution of targets, that in
the present case are unbounded, rather than to force the data
(with a standardisation or rescaling procedure) to conform
to the output activation function.

For forecasting several time steps ahead (multistep ahead
prediction), two methods have been considered. In the
incremental or recursive multistep method, the network has
only one output node, forecasting a single step ahead, and
the network is applied recursively, using the previous
predictions as inputs for the subsequent forecasts. Such an
approach performs well for one-step ahead predictions but,
since the forecast errors are propagated into subsequent
forecasts, a strong deterioration is evidenced for increasing
lead-times.

One of the major benefits of ANNs is the capability of a
neural network to provide a multiple output when several
nodes are included in the output layer. In the direct multistep
method (Fig. 3), each output node represents one time step
to be forecasted, so that the forecasts for all the lead-times
are issued simultaneously. In this way, the longer lead-times
are not penalised by error propagation; in fact, the overall
performances indicate that such methods are more
appropriate for multistep ahead predictions.

Finally, regarding the optimal number of nodes in the
hidden layer, an ANN may suffer from either underfitting
or overfitting. A network that is not sufficiently complex
can fail to detect fully the signal in a complicated data set,
resulting in an inability to generalise to problems never
previously encountered (underfitting). On the other hand, a
network with too large a number of hidden units may fit the
training set exactly but it may learn spurious relationships
peculiar to the training data (in essence, it fits also the noise)( ) 1
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and become lacking in generalisation capability (overfitting).
In consequence, the training performance generally
improves as the number of hidden nodes increases, whereas
the performance on an external validation set tends to
deteriorate when the hidden nodes become too numerous.
In addition, too large a network may take an unacceptably
long time to be trained. There is really no way to establish
the optimal dimensions of the hidden layer just from the
number of outputs and training samples. Extensive trial-
and-error tests for determining the most appropriate numbers
of nodes will be described later.

The nearest-neighbours method (K-NN)

The nearest-neighbours method is a non-parametric method,
as indicated by the absence of any parameterised analytical
function of the input-output relationship, both a priori and
a posteriori (that is, after a calibration or training phase).
The characteristics of the most recent observations are,
instead, used to guide the search for the approximation of
future evolution through a locally fitted model. Yakowitz
(1987) and Karlsson and Yakowitz(1987) extended the K-
NN method, originally a pattern recognition procedure, to
time-series and forecasting problems, constructing a robust
theoretical base for the K-NN method and introducing it
into the hydrological research world, where successful
forecasting applications were developed (Galeati, 1990;
Shamseldin and O’Connor, 1996; Todini, 2000).

In the context of univariate time-series forecasting, for
each forecast instant t, a D-dimensional feature vector is
defined as the vector of the D past observations of the
variable x,

xD(t) = (xt-D+1,…, xt), (4)

which the method assumes to be able to summarise
statistically the entire past of the forecast instant t. Given
the feature vector at instant t, xD(t), the set SK,D of K past
nearest-neighbours of xD(t) may be identified, i.e. the K D-
dimensional vectors xD(tj) belonging to a set of past
observations that minimise the Euclidean distance:

(5)

That is, to any D-ple that is not included in the K-
dimensional set SK,D, corresponds to a distance from the
feature vector that is larger than any of the distances between
the feature vector and each one of the nearest-neighbours.

The estimation of the values following the forecast instant
t is then the sample average of the successors to the nearest-
neighbours:

(6)

where

It should here be noted that the nearest-neighbour prediction
scheme is such that, as Eqn. (6) indicates, in no case can a
value higher than the maximum historical rainfall depth be
predicted and this may affect the generality of the method
when it is used in forecasting extreme events.

Karlsson and Yakowitz (1987) proved that the K-NN
predictor based on the feature vector is asymptotically
optimal among all the predictors defined on the feature
vector xD(t). That is, under fairly general circumstances,
convergence to the optimal predictor is assured as the
historical data set increases.

Case study, rainfall-runoff  model and
calibration approaches
The study catchment is the Sieve River basin, a tributary of
the Arno River in Central Italy. The basin has a drainage
area of 830 km2 and the time of concentration is about 10
hours. The data set consists of five years of hourly discharges
at the closure section of Fornacina, hourly precipitation
measured by 12 raingauges, to be spatially averaged, and
temperature observations at four gauges (used, along with
climatological data, for the estimation of potential
evapotranspiration needed in the continuous rainfall-runoff
simulation).

The deterministic model chosen in the present work to
simulate the rainfall-runoff transformation is a conceptual
lumped and continuously-simulated model called A
Distributed Model (ADM), (Franchini, 1996), based on the
concept of probability-distributed soil moisture storage
capacity. The catchment is assumed composed of an infinite
number of elementary areas (each one with a different soil
moisture content and a different soil moisture capacity) and
the proportion of elementary areas that are saturated is
described by a distribution function: the total surface runoff
is the spatial integral of the infinitesimal contribution
deriving from the saturated elementary areas. The model is
divided into two main blocks: the first represents the water
balance at soil level, while the second represents the transfer
of runoff production at the basin outlet. The soil, in turn, is
divided into two zones: the upper zone produces surface
and subsurface runoff, having as inputs precipitation and
potential evapotranspiration, while the lower zone (whose
input from the first one is percolation) produces base runoff.
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The transfer of these components to the outlet section takes
place in two distinct stages: the first represents the flow
along the hillslopes towards the channel network; the second
is the flow along the channel network towards the basin
outlet. The 11 parameters of the ADM model were calibrated
off-line on the Sieve river basin with the Shuffled Complex
Evolution (SCE-UA) global optimisation algorithm (Duan
et al., 1992), which is both effective (consistently able to
find the region of the global optimum) and efficient (not
requiring too many objective function evaluations).

Because of the strong variability observable in the
structures of the simulation error and of the precipitation
series during the predominant dry or average conditions and
during storm events, the analysis of the data was limited,
both in calibration and validation phases, to the time intervals
of storm events. In the observation period, a total of 84 storm
events was identified and the corresponding precipitation
and river discharge observations (for a total of 4580 hourly
time steps) were collected. As the rainfall-runoff model is
simulating continuously, the initial conditions preceding
each forecast (and a forecast is issued in respect of all the
instants of the events) are obtained from the model
simulation using as input the observed rainfall data up to
the forecast instant.

To estimate the parameters of the time-series analysis
techniques, two different approaches were followed: split-
sample calibration and adaptive calibration. In the split-
sample calibration, the storm events were divided into two
sets: a calibration (or training) set and a validation set, to
test the performances of the calibrated model over out-of-
sample occurrences. In the adaptive calibration, only the
most recently observed values were supposed to be available
for the calibration, so that the calibration of the time-series
analysis model was implemented on-line, as soon as new
observations became available. The nature of the nearest-
neighbours method does not allow an adaptive calibration
because the approach is based on the presence of an extended
database where the search is made for the neighbours at the
moment of forecast. It follows that only a split-sample
calibration was implemented for the K-NN method.

Implementation of  rainfall forecasting
The application of the above time-series techniques for
issuing forecasts of spatially averaged rainfall depths and
their use as input to the conceptual rainfall-runoff
transformation model are here described  briefly (full details
may be found in Toth et al., 2000). Rainfall depth forecasts
for lead-times from 1 to 6 hours were issued in respect of
each hourly time step for all the events in the validation set
and the performances of the resulting river forecasts were

analysed and compared.
For each of the time-series methodologies (ARIMA

models, ANN and K-NN method),  the performances of
various forecasting schemes, investigated through a trial-
and-error process, were classified according to the RMSE
(Root Mean Squared Error) of the hourly rainfall forecasts
accumulated over the six steps ahead as compared to the
6-hour accumulated observed rainfall depths. The best
performing implementation (optimal configuration) for each
time-series analysis model was thus identified.

The rainfall forecasts described above were compared
with those obtainable with simple heuristic forecasting
approaches. The first one, often assumed implicitly when
operating real-time rainfall-runoff models, hypothesises the
future rainfall to be null (null rainfall approach). A second
and a third predictive scheme extrapolate future values on
the basis of the last measures, inferring some sort of
persistence in the data: the persistent method sets the future
rainfall intensity equal to the last measured value, for all
the lead-times investigated (L=1 to 6 hours); the modified
persistent method equates the intensity, for each given lead-
time L, to the average intensity of the last L observations.

The methodologies implemented are compared in Tables
1a and 1b.

The three methods when calibrated with the split-sample
procedure provided the smallest RMSE on the 6-hour
accumulated rainfall, and especially good performances
were achieved by non-linear models. Table 1 shows how
ANN performed better than the nearest-neighbours method,
which in turn was better than ARIMA models for the
precipitation data available.

TRANSFORMATION OF RAINFALL FORECASTS IN
DISCHARGE FORECASTS

The rainfall forecasts obtained in the previous section were
then input to the rainfall-runoff model and the resulting
discharge forecasts were evaluated using the coefficient of
efficiency, E (Nash and Sutcliffe, 1970), compared to the
hourly discharges obtained with the rainfall-runoff model
using as inputs the actual future precipitation (true rainfall
simulation). In this way, a comparison of the effects of the
rainfall forecasting ability alone was allowed, unaffected
by the uncertainties introduced in the rainfall-runoff
transformation.

The coefficient of efficiency for each lead-time L is given
by:
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Table 1b. RMSE of the 1 to 6-hours ahead rainfall forecasts (obtained with the optimal configuration identified for each
forecasting technique) issued for all the validation forecasts instants.

Rainfall forecasting technique Root Mean Squared Error (RMSE)
Lead-time (hours), L mean RMSE

1 2 3 4 5 6
ANN split-sample 1.009 1.225 1.300 1.337 1.361 1.371 1.267
ARMA split-sample 1.020 1.280 1.363 1.408 1.434 1.430 1.322
Nearest neighbours 0.987 1.229 1.348 1.399 1.433 1.429 1.304
ARMA adaptive 1.111 1.467 1.621 1.708 1.751 1.750 1.568
ANN adaptive 1.325 1.606 1.710 1.647 1.581 1.546 1.569
Null rainfall 1.561 1.576 1.591 1.607 1.622 1.602 1.593
Persistent rainfall 1.111 1.519 1.704 1.834 1.916 1.957 1.674
Persistent modified rainfall 1.111 1.504 1.642 1.709 1.739 1.732 1.573

Table 1a. RMSE of the sum of the 6-hours ahead rainfall forecasts issued for all the validation forecasts instants (that is, for
all the time steps included in the events of the validation set).

Rainfall forecasting techniques Tested configurations Optimal configuration RMSE

ARIMA split-sample AutoRegressive order, p=1¸6, AutoRegressive order, p=1,
Moving average order, q=0¸6, Moving average order, q=0,
Differentiation order, d=0,1, 2 Differentiation order, d=0 5.500

ARIMA adaptive AutoRegressive order, p=1¸2, AutoRegressive order, p=1,
Moving average order, q=0¸3, Moving average order, q=0,
Differentiation order, d=0,1, 2 Differentiation order, d=0 6.354

ANN split-sample Input nodes=2¸24 Input nodes=18
Hidden nodes=2¸8 Hidden nodes=2 5.083

ANN adaptive Input nodes=2¸5 Input nodes=3
Hidden nodes=2¸5 Hidden nodes=3 6.913

Nearest neighbours Number of neighbours, K=5¸100, Number of neighbours, K=70,
Feature vector dimension, D=2¸12 Feature vector dimension, D=2 5.343

Null rainfall 7.354

Persistent rainfall 8.063

Persistent modified rainfall 7.175

where tQ̂   is the discharge at time t forecasted using as input
the predicted rainfall values, Qt is the value of the
corresponding true rainfall simulation discharge (known
rainfall) and Q  is the mean of the Qt series. The summations
are extended to all the issued forecasts, that is, to all the
forecasts instants t belonging to all the validation events.

Table 2 shows how the hydrological processes governing
the rainfall-runoff transformation tend to level out the
discharge predictions corresponding to very short lead-times,
because of the response time of the catchment. However,

the influence of the different rainfall forecasts on the
discharges predicted for the longest lead-times is sizeable.

The discharges simulated with the split-sampe calibrated
ANNs provide, for all the lead-times, the highest efficiency
values. The results of ARMA models with split-sample
calibration and of the nearest-neighbours method are also
satisfactory and allow a remarkable improvement in the
discharge forecasts as compared to the heuristic rainfall
forecasting approaches.
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Implementation of discharge
updating
The objective of this section is to compare the performances
of the time-series analysis techniques when applied for
forecasting the simulation error on flood discharges, εt, i.e.
the difference between the observed discharges, Q0, and
those predicted by the conceptual model, Qs. The comparison
aims at identifying, from an operational point of view, the
best approach for forecasting the future values of εt, in order
to update the future simulated discharges Qs. In this part of
the analysis, the Qs are the discharges issued by the rainfall-
runoff model when using as inputs the precipitation values
that actually occurred. Such a working hypothesis implies
a forecasting scenario in which future rainfall is known
(‘perfect foresight’) for both calibration and verification sets,
to be able to evaluate the improvement attainable with the
discharge post-processing independently of the simulation
errors induced by ignorance of future precipitation.

In the trial-and-error tests implemented for each time-
series analysis technique, the efficiency coefficient, EL, of
the discharges predicted with and without updating was
computed for the lead-times, L, ranging from 1 to 6 hours.
The average of EL over the six lead-times, E, was then used
to identify the optimal configurations.

ARMA AND ARIMA MODELS FOR DISCHARGE
UPDATING

In the split-sample calibration of ARIMA models, the
maximum number of autoregressive and of moving average
parameters was limited to three, and d varied from 0 to 2.
The comparison of the efficiencies of the discharges updated
with ARMA models (d=0) showed that a subgroup of

configurations allowed analogously good results (E=0.904
to 0.908). As a consequence, the ARMA(1,1) model was
chosen for the overall comparison, as the most parsimonious
among the better performing models (E=0.907). With the
introduction of the differencing of the series, the
performances deteriorated, the more so for increasing orders
of differencing. The results corresponding to d=1 are
sensibly worse than those allowed by the ARMA–type
models with the same autoregressive and moving average
orders (d=1: E=0.86 to 0.89), while the ARIMA models
with differencing order d=2 are even worse (d=2: E=0.53
to 0.86).

In the adaptive calibration, the ARIMA orders tested were
the same as those implemented in the split-sample
calibration. The performance underwent, even more sharply
than in the split-sample calibration, a strong deterioration
for increasing order of differencing d, with a clear superiority
of ARMA models over ARIMA models with the same
autoregressive and moving average orders. Extremely
parsimonious structures turned out to be the best performing
ones, namely the ARMA(1,1) and the ARIMA(1,1,0)
models. The linear models were calibrated initially on a
number of observations, w, preceding the forecast instant
initially set equal to 100 (that is on a moving window of
100 hours), following the indications of previous studies
(Toth et al., 1999). It was of practical interest to test how
performance changes with the length of the moving window.
The results with the ARMA(1,1) model showed that the
efficiency of the updating improved only moderately as w
increased over 50 hourly observations. It may, therefore, be
inferred that, in practice, good forecasting efficiency may
be obtained with only a few observations from the current
event (a couple of days)..

Table 2. Efficiency coefficients of the discharge forecasts corresponding to the different rainfall forecasts (issued for all the
time steps belonging to the validation events) for varying lead-time (EL) and mean of the efficiency coefficients over the 6
lead-times (E).

Rainfall forecasting technique Discharge efficiency (EL)
Lead-time (hours), L mean (EL)

1 2 3 4 5 6
ANN split-sample 1.000 0.998 0.990 0.974 0.947 0.911 0.970
ARMA split-sample 1.000 0.998 0.990 0.971 0.942 0.903 0.967
Nearest-neighbours 1.000 0.998 0.989 0.970 0.941 0.902 0.967
ARMA adaptive 1.000 0.998 0.988 0.964 0.923 0.864 0.956
ANN adaptive 1.000 0.996 0.976 0.931 0.857 0.761 0.920
Null rainfall 1.000 0.994 0.973 0.934 0.879 0.813 0.932
Persistent rainfall 1.000 0.997 0.984 0.950 0.885 0.784 0.934
Persistent modified rainfall 1.000 0.997 0.985 0.952 0.895 0.815 0.941
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ANNS FOR DISCHARGE UPDATING

In the split-sample calibration, the test covered all the
networks with a number of input nodes, NI, ranging from 2
to 24 hours and a number of hidden nodes, NH, ranging
from two to eight. The networks with a medium input layer
dimension (between 6 and 12) and a small number of hidden
nodes gave the highest mean coefficients of efficiency. The
network (8-2-6), corresponding to eight input nodes, two
hidden nodes and six output nodes (lead-time = 6 hours)
was identified as performing best (E=0.9114) but the
performance gain in comparison to the networks with
smaller input layers was extremely small. Given the modest
improvement, a more parsimonious network was preferred
and the ANN with four input nodes and two hidden nodes
(E=0.9105) was chosen as the optimal configuration for the
split-sample calibration application.

Simple network architectures were tested in the adaptive
approach, with NI and NH ranging from two to four. The
results indicated the most parsimonious structure (NI=2,
NH=2) as the most efficient network (E=0.904).

NEAREST-NEIGHBOUR METHOD FOR DISCHARGE
UPDATING

In regard to each dimension of the feature vector, D, ranging
from 1 to 12, the number of nearest-neighbours, K, was
gradually increased from 10 to 70.

When the number of neighbours increased from 10 to 20,
there was a slight improvement but thereafter, the efficiency
coefficient deteriorated. Small dimensions of the feature
vector (D=2 to 4) provided the highest efficiencies of the
updated discharges, so that the best performing
implementation of the method resulted with K=20
neighbours and a dimension of the feature vector D=2
(E=0.899).

OVERALL COMPARISON OF DISCHARGE UPDATING

Table 3 shows the coefficients of efficiency (averaged over
the lead-times) of the discharge forecasts updated with the
best performing configurations identified in the trial-and-
error tests for each time-series method and in Fig. 4 the
performances of the various updating techniques in respect
of increasing lead-times are illustrated.

The overall results highlight the relevant improvement
allowed by all the methods analysed as compared to the
not-updated discharge forecasts and show that the updating
is worth implementing with all the time-series analysis
techniques and over all the lead-times from one to six hours
(with the only exception of the ARMA model adaptively
calibrated for the longest lead-time).

The linear stochastic models provide very good results
for small lead-times, especially for a lead-time of 1 hour,
whereas for larger lead-times the performance of the ARMA

Table 3. Mean over the six lead-times (L=1¸6 hours) of the efficiency coefficients (EL) of the updated
discharge forecasts (issued for all the time steps belonging to the validation events) for each updating
time-series analysis technique.

Updating technique Optimal configuration Mean discharge efficiency,
E=mean(EL), L=1¸6 hours

ARMA split-sample AutoRegressive order, p=1,
Moving average order, q=1, 0.907
Differentiation order, d=0

ARMA adaptive AutoRegressive order, p=1,
Moving average order, q=1, 0.892
Differentiation order, d=0

ANN split-sample Input nodes=4
Hidden nodes=2 0.911

ANN adaptive Input nodes=2
Hidden nodes=2 0.904

Nearest neighbours Number of neighbours, K=20,
Feature vector dimension, D=2 0.899

No updating 0.826
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model adaptively calibrated deteriorates badly. This is to be
expected as the AR(I)MA models use a recursive type
scheme to perform the multi-step ahead forecasts and
therefore tend to accumulate errors as the lead-time
increases.

An extremely good performance is provided for longer
lead-times by ANNs adaptively calibrated, but ANNs with
split-sample calibration allow the greatest overall gain over
not-updated discharges, for all the lead-times (Table 3).

Integrated implementation of  rainfall
forecasting and discharge updating
Following the separate implementation of rainfall
forecasting and discharge updating techniques, the
performance of an integrated flood warning approach,
operating with both the input prediction and the output
correction modules, was analysed.

Each model used for discharge updating was thus re-
calibrated on the simulation errors resulting when using the
rainfall predictions as input to the hydrological model, rather
than assuming advance knowledge of future precipitation
values. For both rainfall forecasting and discharge updating,
the same time-series analysis technique (ARIMA models,
ANNs or nearest-neighbours method) and the same
calibration (split-sample or adaptive) were used, following
the indications on the most appropriate modelling schemes
obtained previously.
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Fig.4. Overall comparison of the efficiency coefficients for the updated discharges of the validation data set
corresponding to the best configurations for all the considered time-series methods

The results (Fig. 5) confirm the improvement achieved
by the updating procedures; this also applies for the case,
certainly closer to operational reality, in which future rainfall
values are unknown. The figure also highlights the
favourable comparison with the discharge obtained when
neither rainfall prediction nor updating is performed (‘no
action’).

Summary and conclusions
This work reports the results of a comparison of time-series
analysis techniques aimed at improving the real-time flood
forecasts issued by a deterministic conceptual-type rainfall-
runoff model. The application of linear stochastic models,
of Artificial Neural Networks (ANNs) and of the nearest-
neighbours method was investigated with two different aims,
pursued both separately and in cascade: (1) forecasting the
short-term future rainfall to be used as real-time input in
the rainfall-runoff model, and (2) updating the discharge
forecasts issued by the rainfall-runoff model. Along with
indications on the most appropriate configuration of the
modelling schemes, the study analyses and compares the
relative advantages and limitations of each time-series
analysis technique, for lead-times varying from one to six
hours.

As far as precipitation forecasting is concerned, the results
(presented in more detail in Toth et al., 2000) indicate that,
apart from ANNs with adaptive training, all the  time-series
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analysis techniques considered allow significant
improvements in flood  forecasting accuracy compared with
the use of empirical rainfall predictors, often adopted in
operational practice.

As far as discharge updating is concerned, the study
highlights the relative improvement in the efficiency of the
updated discharge forecasts when compared to the
discharges resulting from the use of the conceptual model
alone, both when future rainfall is assumed to be known
and when future rainfall is the output of a predictive model.
Such improvement, even if it deteriorates with increasing
lead-times, is provided for lead-times from 1 to 6 hours.

For both forecasting applications, it would be interesting
to repeat the analysis over different study basins and to
increase the size of the sample of historical events, to gain
more definitive results. A larger data set would permit a
seasonal analysis of the storm events; that should result in a
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Fig.5. Efficiency coefficients for the discharges of the validation data set corresponding to predicted rainfall,
with and without updating and comparison with the “no action” option: null rainfall and no updating.

stronger correlation between events generated by similar
meteorological conditions and, therefore, in more reliable
inferring of out-of-sample occurrences based on calibration
data.
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